Mild solution and semigroup theory

2022-08-02   Varnothing

Mild solution is an important object to investigate the strong solution of hydrodynamic flows with dissipation. The investigation will apply semigroup theory and some other functional tools.

Introduction

Consider Naiver-Stokes equation with zero-force
\begin{equation}
\label{Zero Force} \tag{NS}
\begin{cases}
\partial_t v-\Delta v+v\cdot \nabla v+\nabla p=0\\
\nabla \cdot v=0, v_{|t=0}=v_0.
\end{cases}
\end{equation}Take Helmholtz projection $P$ at both hand of \eqref{Zero Force}, and remind the divergence free condition, then the pressure is eliminated: $\partial_t v+Av+P (v\cdot \nabla )v=0$, where $A=-P\Delta $ is the Stokes operator((For more information about $A$ and the semigroup $e^{-tA}$, see the appendix.)). Now solve formally as ODE with initial data $v_0$, it figure as:
\begin{equation}
\label{Integral Equation} \tag{2}
v(t)=e^{-tA}v_0-\int_0^t e^{-(t-\tau )A}P \nabla (v\otimes v)(\tau )d\tau \eqqcolon v_1(t)+B(v,v)(t).
\end{equation}Here $B(u,v)\coloneqq -\int_0^t e^{-(t-s)A}P \nabla (u\otimes v)(s)ds$. Then $v$ is a mild solution of \eqref{Zero Force} in $X(\Omega_T)$ with initial data $v_0$, if $v=v_1+B(v,v)$ holds in $X(\Omega_T )$.

Fix structure $X$ and spatial domain $\Omega$, moreover, we say $v$ is a mild solution in $ [t_0,t_1) $ if $u(t)=v(t+t_0)$ is a mild solution in $X(\Omega_{t_1-t_0} )$ with initial data $v(t_0)$, i.e.
\begin{equation*}
\label{Restriction Mild Solution} \tag{3}
\begin{split}
v(t)=&e^{-(t-t_0)A}v(t_0)-\int_{t_0}^t e^{-(t-\tau) A }P\nabla (v\otimes v )(\tau )d\tau,\forall t\in [t_0,t_1).\\
\end{split}
\end{equation*}The following claim tells that the restriction preserves a mild solution.

If $v$ is a mild solution in $[0,T)$ with initial data $v_0$, then for any $[t_0,t_1)\subset [0,T) $, $v$ is also a mild solution in $[t_0,t_1)$ with inital data $v(t_0)$.(($v(t_0)$ need to be well-defined.))
Denote $P \nabla (v\otimes v)(t)=F(t) $ for convenience, then
\begin{equation*}
\begin{split}
v(t)=& e^{-tA}v_0-\int_0^t e^{-(t-\tau )A}F(\tau )d\tau\\
=& e^{-(t-t_0)A} e^{-t_0A} v_0-\int_0^{t_0} e^{-(t-t_0)}e^{-(t_0-\tau)} F(\tau )d\tau
-\int_{t_0}^t e^{-(t-\tau )A}F(\tau )d\tau\\
=& e^{-(t-t_0)A} \br{e^{-t_0 A}+ \int_0^{t_0} e^{-(t_0-\tau)}F(\tau )d\tau }- \int_{t_0}^t e^{-(t-\tau )A}F(\tau )d\tau\\
=& e^{-(t-t_0 ) A} v(t_0)-\int_{t_0}^t e^{-(t-\tau)A }F(\tau )d\tau
\end{split}
\end{equation*}for any $t\in [t_0,t_1)$.
Clearly it corresponds to the characterization \eqref{Restriction Mild Solution}.

Existence with $L^q(q>3)$ and $L^3$ data

Now we discuss about the existence of mild solution in $L^q(q>3)$ and $L^3$ case respectively. The main tool is Banach fixed-point theorem, where we consider the following mapping:
\begin{equation}
\label{Integral Transform} \tag{4}
\Psi: v\mapsto v_1+ B(v,v), v\in X .
\end{equation}To make it a contraction, different spaces $X$ are constructed for different cases.

Suppose $v_0\in L^q_\sigma(q>3)$, then with initial data $v_0$ there exists a mild solution
$v\in C([0, T_1]; L^q_\sigma )$ for equation \eqref{Zero Force}, where
$$ T_1\sim \norm{v_0}_q^{-s }, \dfrac{2}{s}+\dfrac{3}{p}=1.$$
Denote $X=C_tL^q_\sigma$. It is necessary to give out the estimate for $B(u,v)$ and $e^{-tA}v_0 $ first. Suppose $u,v\in X$ and notice $\frac 12-\frac 3{2q}>0$, then
\begin{equation*}
\begin{split}
\norm{B(u,v)(t)}_q \le & \int_0^t \norm{e^{-(t-\tau)A}P\nabla }_{\frac q2\to q }\norm{u(\tau ) }_q\norm{v(\tau ) }_qd\tau\\
\le & C\br{\int_0^t(t-s)^{- \frac 3{2q}-\frac 12 }ds} \norm{u}_{X}\norm{v}_{X}\\
\le & C_0 t^{\frac 12-\frac 3{2q} }\norm{u}_{X}\norm{v}_{X};
\end{split}
\end{equation*}Moreover, $\norm{e^{-tA}v_0 }_q\le C_q\norm{v_0}_q$ by \ref{}. Consequently $B(u,v), e^{-tA}v_0\in X$ as $e^{-tA}$ is a strong continuous semigroup in $L^q_\sigma$.Now we consider the mapping $\Psi$ and show that it is a contraction in
$$B_1=\{v\in X| \norm{v}_{X}\le 2 C_q \norm{v_0}_q \}$$for proper time length $T_1>0$.

  1. $\Psi$ stablize $B_1$((That is say, $\Psi(B)\subset B$)). The former estimates show that $\Psi:X\to X$, now for any $\norm{v}_{X}\le 2C_q\norm{v_0}_q$, it comes
    \begin{equation*}
    \begin{split}
    \norm{\Psi(v) }_{X}\le & \norm{e^{-tA}v_0 }_{X}+\norm{B(v,v) }_{X}\\
    \le & C_q\norm{v_0}_q+ C_0T_1^{\frac 12-\frac 3{2q} }\cdot (4C_q^2 \norm{v_0}^2_q)\\
    \le & 2C_q \norm{v_0}_q
    \end{split}
    \end{equation*}once we let $T_1\le (4C_0C_q\norm{v_0}_q)^{-s} $;
  2. $\Psi$ contracts $B_1$. Indeed, $\forall v_1,v_2\in X ,$
    \begin{equation*}
    \begin{split}
    \norm{\Psi(v_1)-\Psi(v_2) }_{X}=& \norm{B(v_1,v_1)-B(v_2,v_2) }_{X}=\norm{B(v_1,v_1-v_2)+B(v_1-v_2,v_2) }_{X}\\
    \le & C_0 T_1^{\frac 12-\frac 3{2q} }(\norm{v_1}_{X}+\norm{v_2}_{X})\norm{v_1-v_2}_{X}\\
    \le & C_0 T^{\frac 12-\frac 3{2q} }\cdot{4C_q\norm{v_0}_q \cdot} \norm{v_1-v_2}_{X}\le \frac 12\norm{v_1-v_2 }_{X}
    \end{split}
    \end{equation*}if $T_1\le (8C_0C_q\norm{v_0}_q )^{-s}$.

In conclusion, $\Psi$ is a contraction in $B_1$ for $T_1=(8C_0C_q\norm{v_0}_q)^{-s}\sim \norm{v_0}_q^{-s}$. In this case, there is a unique $v$ s.t. $v(t)=e^{-tA}v_0+B(v,v)(t)$ holds in $B_1$ (and thus in $X$).

The above proof only grants the uniqueness in class $\norm{v}_X\le 2C_q\norm{v_0}_q $ but not in the whole $X$. Thus we need to verify the uniqueness respectively:

Suppose $0\sl T\le T',$$ v\in C([0,T], L^q_\sigma), u\in C([0,T'], L^q_\sigma)$ are two mild solution of \eqref{Zero Force} with same initial data $v_0\in L^q_\sigma$, then $v=u$ in $[0, T]$.
Suppose $v,u$ diverge at $t_0$, we show that $t_0=T$. Denote $w=u-v$ on $[0,T]$, then $w=0$ on $[0,t_0]$. For $t_1\in (t_0, T]$. We observe that
\begin{equation*}
\begin{split}
\norm{w(t)}_q\le & \norm{B(u,w)(t)+B(w,v)(t) }_q\\
\le & \int_{t_0}^t \norm{e^{-(t-\tau)A}P\nabla } \norm{w(\tau)}_q(\norm{u(\tau )}_q+\norm{v(\tau)}_q )d\tau\\
\le & C_0 (t-t_0)^{\frac 12-\frac 3{2q} }(\norm{ u}_{X}+\norm{v}_{X} )\norm{w}_{X}.
\end{split}
\end{equation*}Then we can choose $t'$ small enough that for $t\in (t_0,t_0+t'),$
$$C_0 (t-t_0)^{\frac 12-\frac 3{2q} }(\norm{ u}_X+\norm{v}_X )\sl 1\Longrightarrow w(t)=0, $$which contracts to the selection of $t_0$.

That is say, two mild solution must coincident on their common interval. So it is proper to prolong the interval.

Next we consider the existence for $L^3$ data. To reach it, we introduce a space for $p\ge 3:$
\begin{equation*}
\norm{v}_{Y^p}=\norm{ \norm{v }_{Z^p}(t) }_{L^\infty_t}= \norm{t^{\frac 12-\frac 3{2q} }\norm{v(t)}_p }_{L^\infty_t},
\end{equation*}and set
$$Y^p_0=\{v\in Y^p| \norm{v}_{Z^p}(t)\xrightarrow{t\to \infty} 0 \}, Y^3_0=Y^3.$$Denote $Y^{p,q}=Y^p\cap Y^q, Y^{p,q}_0=Y^p_0\cap Y^q_0$. See appendix for more information about $Y^p$. Now we claim the existence as

Suppose $v_0\in L^3_\sigma$, then for any $q\in (3,\infty)$, there exists $T_2>0$ such that $v\in Y^{3,q}(\Omega_{T_2} ) $ is a mild solution of \eqref{Zero Force} with initial data $v_0$.
Set $\alpha \in (3,q)$. The about corollary indicates for $u\in Y^\alpha,$\
\begin{equation*}
v\in Y^{3,q}/Y^{3,q}_0\Longrightarrow B(u,v)\in Y^{3,q}/Y^{3,q}_0.
\end{equation*}Now we consider $\Psi$ defined by \eqref{Integral Transform} in space
$$B_2=\{v\in Y^{3,q}_0| \norm{v}_{Y^\alpha}\le 2\norm{e^{-tA}v_0 }_{Y^\alpha} \} $$and find the proper time length $T_2$.

  1. $\Psi$ stablize $B$. First we prove $\Psi: Y^{3,q}_0\to Y^{3,q}_0$. Indeed,
    \begin{equation*}
    \norm{e^{-tA}v_0}_{3}\le C_3\norm{v_0}_3, \norm{e^{-tA}v_0}_q\le C t^{-\frac 32 (\frac 13-\frac 1q )}\norm{v_0}_3\Longrightarrow e^{-tA}v_0\in Y^{3,q}.
    \end{equation*}Moreover, by the asymptomatic behavior of $t^{\frac 12-\frac 3{2q} } \norm{e^{-tA}v_0 }_q$ in \ref{Asymp Behavior} we see $e^{-tA}v_0\in Y^{3,q}_0$. As for $B(v,v)$, $v\in Y^{3,q}_0\Longrightarrow B(v,v)\in Y^{3,q}_0$ by \ref{Bilinear Y}.Now for $\norm{v}_{Y^\alpha}\le 2\norm{e^{-tA}v_0}_{Y^\alpha}$, we have
    \begin{equation*}
    \begin{split}
    \norm{\Psi(v)}_{Y^\alpha}\le & \norm{e^{-tA}v_0 }_{Y^\alpha}+\norm{B(v,v) }_{Y^\alpha}\\
    \le & \norm{e^{-tA}v_0 }_{Y^\alpha}+4C\norm{e^{-tA}v_0}_{Y^\alpha}^2\\
    \le &2 \norm{e^{-tA}v_0 }_{Y^\alpha},
    \end{split}
    \end{equation*}provide $\norm{ e^{-tA}v_0}_{Y^\alpha}$ is small enough.
  2. $\Psi$ contracts $B$. Take $u,v\in B$, then
    \begin{equation*}
    \begin{split}
    \norm{\Psi(u)-\Psi(v) }_{Y^{3,q}}=& \norm{B(u, u-v )+B(u-v,v) }_{Y^{3,q}}\\
    \le & C(\norm{u}_{Y^\alpha}+\norm{v}_{Y^\alpha} )\norm{u-v}_{Y^{3,q}}\\
    \le & 4C \norm{e^{-tA}v_0 }_\alpha \norm{u-v }_{Y^{3,q}},
    \end{split}
    \end{equation*}which contracts also for small $\norm{e^{-tA}v_0}_{Y^\alpha}$.

The criterion for above is $\norm{e^{-tA}v_0 }_{Y^\alpha}\le (8C)^{-1} $, which can be reached when

  1. $\norm{v_0}_3$ is small, since $\norm{e^{-tA}v_0 }_{\alpha}\le C_\alpha t^{-(\frac 12-\frac{3 }{2\alpha } ) }\norm{v_0}_3 $;
  2. $T_2$ is small, since $\norm{e^{-tA}v_0 }_{Z^\alpha}\to 0$ as $t\to 0$ by \ref{}.

Consequently, if $\norm{v_0}_3\le (8CC_\alpha)^{-1}$, there exists unique global mild solution under structure $Y^{3,q}_0 $;
if not, there exists unique mild solution in $[0,T_2]$ under $Y^{3,q}_0$, for $T_2$ the critical time satisfying $\norm{e^{-tA}v_0 }_{Z^\alpha}\le (8C)^{-1},\forall t\in [0, T_2]$.

Suppose $0\sl T\le T', v\in Y^{3,q}_0(\Omega_T ), u\in Y^{3,q}_0(\Omega_{T'} )$ are two mild solution of \eqref{Zero Force} with same initial data $v_0\in L^3_\sigma$, then $v=u$ in $[0, T]$.
Similarly we define $w=u-v$ and $t_1$ the diverging time. Then
\begin{equation*}
\begin{split}
\norm{w}_\alpha \le & \int_{t_1}^t \norm{e^{-(t-\tau)A}P\nabla }_{\frac \alpha 2\to \alpha }(\norm{u(\tau)}_{\alpha}+\norm{v(\tau ) }_\alpha )\norm{w(\tau)}_\alpha d\tau\\
\le & C \int_{t_1}^t (t-\tau)^{-\frac 12-\frac{3}{2\alpha}} \tau^{-1+\frac 3\alpha }d\tau (\norm{u}_{Y^\alpha}+\norm{v}_{Y^\alpha})\norm{w}_{Y^\alpha(\Omega_t )}\\
\le & C t^{-\frac 12+\frac 3{2\alpha} } \br{ \int^1_{\frac{t_1}{t}} (1-\theta )^{-\frac 12-\frac 3{2\alpha } }\theta^{-1+\frac{3}{\alpha}} d\theta} (\norm{u}_{Y^\alpha}+\norm{v}_{Y^\alpha})\norm{w}_{Y^\alpha(\Omega_t )}\\
\le & Ct^{-\frac 12+\frac 3{2\alpha } }\br{1-\frac {t_1} t}^{-\frac 12+\frac 3{2\alpha } }(\norm{u }_{Y^\alpha }+\norm{v}_{Y^\alpha } )\norm{w }_{Y^\alpha(\Omega_t ) }\\
\Longrightarrow \norm{w}_{Y^\alpha(\Omega_t )}\le & C (1-\frac{t_1}{t} )^{-\frac 12+\frac 3{2\alpha } }\br{\norm{u}_{Y^\alpha}+\norm{v }_{Y^\alpha } }\norm{w }_{Y^\alpha(\Omega_t ) }.
\end{split}
\end{equation*}Then $w(t)=0$ for $t$ large than $t_1$.

Regularity of Mild Solution

We show that the mild solution obtained above is also a strong solution (in probably smaller interval), and it is .

The above mild solution lays in $L^sL^q$ for any $\frac{2}{s}+\frac 3q=1, s\in (3,\infty)$. Moreover, if $v_0\in L^2_\sigma\cap L^3_\sigma,$ then $v$ lays in $L^\infty L^2\cap L^2\dot H^1$.

We will set $B_3, B_4, B_5$ in $L^sL^q,L^\infty L^2, L^2 \dot H^1 $ respectively, and show $\Psi$ is a contraction in $B_2\cap B_3\cap B_4\cap B_5$ for proper small time length $T$.

  1. $L^sL^q$: First we give out $L^sL^q$ estimate for $v_1, B(v,v)$ first. The estimate \ref{LsLq v1} gives out $\norm{v_1 }_{L^sL^q}\le C\norm{v_0}_3 $. As for $B(v,v)$, HLS \eqref{HLS} implies
    \begin{equation*}
    \begin{split}
    \norm{B(u,v)}_{L^sL^q}\le & C\norm{ \int_0^t |t-\tau|^{-\frac 12-\frac 3{2q} }\norm{u(\tau )}_q\norm{v(\tau )}_q d\tau}_{L^s}\\
    \le & C\norm{\frac{1}{t^{\frac 12+\frac 3{2q} }}*\br{ \norm{u(t)}_q\norm{v(t)}_q} }_{L^{s}_t}\\
    \le & C\norm{\norm{u(t)}_q\norm{v(t)}_q }_{L^{s/2}_t}\\
    \le & C\norm{u}_{L^sL^q}\norm{v}_{L^sL^q}.
    \end{split}
    \end{equation*}Now we show $\Psi$ is a contraction in $B_{3}=\{v\in L^sL^q| \norm{v}_{L^sL^q}\le 1/(4C) \}$ for small $T$.

    1. $\Psi$ stablizes $B_3$. Since $v_1\in {L^sL^q(\Omega_{\infty})}$$\Longrightarrow \norm{v_1}_{L^sL^q(\Omega_t ) }\to 0$ as $t\to 0$. Then
      \begin{equation*}
      \begin{split}
      \norm{\Psi (v)}_{L^sL^q}\le & \norm{ e^{-tA}v_0 }_{L^sL^q}+C\norm{v}_{L^sL^q}^2\\
      \le & \frac{1}{8C}+ \frac{1}{16C}\le \frac{1}{4C},
      \end{split}
      \end{equation*}if $T$ is small enough.
    2. $\Psi$ contracts $B_3$:
      \begin{equation*}
      \begin{split}
      \norm{\Psi(u)-\Psi(v)}_{L^sL^q}= & \norm{B(u,u-v)+B(u-v,v) }_{L^sL^q}\\
      \le & C\br{\norm{u}_{L^sL^q}+\norm{u}_{L^sL^q}}\norm{u-v}_{L^sL^q}\\
      \le & \frac{1}{2} \norm{u-v}_{L^sL^q}.
      \end{split}
      \end{equation*}
  2. $L^2\dot H^1:$ Apply \eqref{Stokes Identity} and HLS inequality again, we have
    \begin{equation*}
    \norm{\nabla e^{-tA}v_0 }_{L^2L^2}\le \norm{v_0}_2;
    \end{equation*}\begin{equation*}
    \begin{split}
    \norm{\nabla B(u,v)(t) }_{L^2L^2}\le & \norm{\int_0^t \norm{\nabla e^{-(t-\tau )A}P }_{\frac{1}{1/q+ 1/2} \to 2}\norm{u(\tau)}_{q}\norm{\nabla v(\tau )}_2 d\tau}_{L^2_t} \\
    \le &\norm{ \int_0^t \abs{t-\tau }^{-\frac 12-\frac 3{2q} }\norm{u(\tau)}_q\norm{\nabla v(\tau)}_2 d\tau}_{L^2_t}\\
    \le & \norm{ t^{-(\frac 12+\frac 3{2q} )} * \norm{u(t)}_q\norm{\nabla v}_2}_2\\
    \le & C\norm{u }_{L^sL^q}\norm{\nabla v }_{L^2L^2}.
    \end{split}
    \end{equation*}Set $B_5=\{v\in L^2\dot H^1| \norm{v}_{L^2\dot H^1}\le 2\norm{v_0}_2 \}$. Then for stabilization and contraction,
    \begin{equation*}
    \begin{split}
    \norm{\Psi(v)}_{L^2\dot H^1 }\le \norm{v_0}_2+C\norm{v}_{L^sL^q}\norm{v}_{L^2\dot H^1 }\le 2\norm{v_0};
    \end{split}
    \end{equation*}\begin{equation*}
    \begin{split}
    \norm{\Psi(u)-\Psi(v) }_{L^2\dot H^1}\le & C\br{\norm{v}_{L^sL^q}+\norm{u }_{L^sL^q} }\norm{u-v}_{L^2 \dot H^1} \\
    \le & \frac 12\norm{u-v}_{L^2\dot H^1}
    \end{split}
    \end{equation*}when $u,v\in B_5\cap B_3$ and $ T$ small enough.
  3. $L^\infty L^2:$ The estimate is given by:
    \begin{equation*}
    \norm{v_1(t)}_{L^2}\le \norm{v_0}_2;
    \end{equation*}\begin{equation*}
    \begin{split}
    \norm{B(u,v)(t)}_{L^2}\le & \int_0^t \norm{e^{-(t-\tau)A} P\nabla }_{\frac 1{1/\alpha +1/2}\to 2 }\norm{u(\tau) }_\alpha\norm{v(\tau) }_2 d\tau\\
    \le & \int_0^t |t-\tau |^{-\frac 12-\frac 3{2\alpha}}\cdot \tau^{-\frac{1}{2}+\frac{3}{2\alpha} } \norm{u(\tau )}_{Z^\alpha} \norm{v(\tau) }_2 d\tau\\
    \le &C\norm{u }_{Y^\alpha}\norm{v}_{L^\infty L^2}.
    \end{split}
    \end{equation*}Set $B_4=\{v\in L^\infty L^2|\norm{v}_{L^\infty L^2 }\le \norm{v_0}_2 \}$, then the contraction in $B_2\cap B_4$ is promised:
    \begin{equation*}
    \begin{split}
    \norm{\Psi(v)}_{L^2L^\infty}\le & \norm{e^{-tA}v_0}_{L^\infty L^2}+\norm{B(v,v) }_{L^\infty L^2}\\
    \le & \norm{v_0}_{2}+C\norm{v}_{Y^\alpha}\norm{v}_{L^\infty L^2}\le 2\norm{v_0};
    \end{split}
    \end{equation*}\begin{equation*}
    \begin{split}
    \norm{\Psi(u)-\Psi(v) }_{L^2L^\infty}\le & C (\norm{u}_{Y^\alpha}+\norm{v}_{Y^\alpha})\norm{u-v}_{L^\infty L^2}\\
    \le & \frac 12 \norm{u-v}_{L^\infty L^2}
    \end{split}
    \end{equation*}when $u,v\in B_2\cap B_4$ and $T$ small enough.

The above three arguments shows $\Psi$ is a contraction in $B_2\cap B_3\cap B_4\cap B_5$ for small $T$. Then $v$ obtained in \ref{L^3 Mild Solution} lays in $L^sL^q$ locally. moreover, it lays in $L^\infty L^2\cap L^2\dot H$ if $v_0\in L^2_\sigma\cap L^3_\sigma$, which implies a strong solution.

Appendix

For $3\le p\le r\le q$, we have$Y^{p,q}\hookrightarrow Y^r, Y^{p,q}_0\hookrightarrow Y^r_0.$
By the index relation, we can always take $\theta \in [0,1]$ such that $\frac 1r=\frac \theta p+\frac {(1-\theta)}q$, then it comes
\begin{equation}
\begin{split}
\norm{v}_{Z^r}(t)=& t^{\frac 12-\frac 3{2r}} \norm{v(t)}_r
\le t^{\frac \theta 2-\frac{3\theta}{2p} } \cdot t^{\frac{1-\theta}{2}-\frac{1-\theta}{2q} }\norm{v(t)}_p^\theta\norm{v(t)}_q^{1-\theta}\\
=& \br{t^{\frac 12-\frac{3}{2p} }\norm{v(t)}_p }^\theta\cdot \br{t^{\frac 12-\frac{3}{2q} }\norm{v(t)}_q }^{1-\theta }\\
= & \norm{v }_{Z^p}^{\theta}(t) \norm{v }_{Z^q}^{1-\theta}(t).
\end{split}
\end{equation}Consequently, it comes that $\norm{v}_{Y^r}\le \norm{v}_{Y^p}^\theta\norm{v}_{Y^q}^{1-\theta}\Longrightarrow Y^{p,q}\hookrightarrow Y^r$. Apply the asymptomatic behavior we also get $Y^{p,q}_0\hookrightarrow Y^r_0$.
Suppose $\frac {1}{\gamma}=\frac 1 \alpha+\frac 1\beta, \alpha,\beta\ge 3$. If $u\in Y^\alpha, v\in Y^\beta/ Y^\beta_0$, then $B(u,v)\in Y^\beta/Y^\beta_0$.
The estimate below apply inequality \eqref{Rearrangement}:
\begin{equation*}
\begin{split}
\norm{B(u,v)(t) }_\beta=& \norm{\int_0^t e^{-(t-\tau)A}P\nabla (u\otimes v )(\tau )d\tau }_\beta\\
\le & \int_0^t \norm{e^{-(t-\tau )A}P\nabla }_{\gamma \to \beta }\norm{u(\tau ) }_\alpha\norm{v(\tau)}_\beta d\tau\\
\le & \int_0^t (t-\tau )^{-\frac 12-\frac 3{2\alpha} }\norm{u(\tau)}_\alpha\norm{v(\tau) }_\beta d\tau\\
= & \int_0^t (t-\tau)^{-\frac 12-\frac 3{2\alpha}}\tau^{-(1-\frac{3}{2\alpha}-\frac 3{2\beta} )}\cdot \br{\tau^{\frac 12-\frac 3{2\alpha} }\norm{u}_\alpha }\br{\tau^{\frac 12-\frac 3{2\beta} }\norm{v}_\beta} d\tau\\
\le & C t^{-\frac 12+ \frac 3{2\beta}}\norm{u}_{Z^\alpha}(t)\norm{v}_{Z^\beta}(t).
\end{split}
\end{equation*}Consequently, we see $\norm{B(u,v)}_{Z^\beta}(t)\le C\norm{u }_{Z^\alpha}(t)\norm{v }_{Z^\beta}(t) $. The claim follows immediately.
$\int_0^t (t-\tau)^r\tau^sd\tau\le C t^{r+s+1 }$ if $r+s>-1$.
\begin{equation*}
\begin{split}
\int_0^t(t-\tau )^r \tau^sd\tau\le & t^{r+s+1 } \int_0^t \br{1-\frac{\tau }{t} }^r\br{\frac \tau t }^s d\frac{\tau}{t} \\
\le & t^{r+s+1}\int_0^1 \br{1-\theta }^r\theta^s d\theta\\
\le & t^{r+s+1} \int_0^1 \theta^{r+s}d\theta\le \frac {t^{r+s+1} }{r+s+1}.
\end{split}
\end{equation*}
[Hardy-Littlewood-Sobolev Inequality]
For $p>1,\alpha=n(1-\frac{1}{p}+\frac 1q )$, we have
\begin{equation*}
\norm{\frac{1}{x^{\alpha }}* f }_q\lesssim \norm{f}_p,\forall f\in L^p.
\end{equation*}
Suppose $v\in L^3$, then $\norm{e^{-tA}Pv}_{L^sL^q}\le C\norm{v}_{3}$ for $\frac{2}{s}+\frac 3q=1, s\in (3,\infty]$.
The case $s=\infty$ is directly from estimate. For others, we consider following mapping:
$$T: L^r(\Omega; \R^3)\to L^s_w(0,\infty), v\mapsto \norm{e^{-tA}Pv }_{L^q}. $$Notice $\norm{e^{-tA}Pv }_q\le Ct^{-\frac 1s}\norm{v}_3$, we can show that $T$ is weak-$(3,s)$ for $s\in [3,\infty)$ as(($\norm{t^{-\frac 1s } }_{L^s_w}=\sup_{\lambda}\{\lambda |\{|t^{-\frac 1s} |> \lambda \} |^\frac 1s \}$$=\sup_\lambda \{\lambda \cdot (2\lambda)^{-s\cdot \frac 1s } \}=\frac 12. $))
\begin{equation*}
\begin{split}
\norm{Tv}_{L^s_w}\le C\norm{ t^{-\frac 1s} }_{L^s_w} \norm{v}_3\le C\norm{v}_3.
\end{split}
\end{equation*}Then Marcinkiewicz interpolation tells $T$ is strong $(3,s)$ for any $s\in (3,\infty)$.
$v_1(t)=e^{-tA}v_0 $ is a classic solution of Stokes system
\begin{equation*}
\begin{cases}
\partial_t v-\Delta v+\nabla p=0,\\
\nabla\cdot v=0,v(0)=v_0.
\end{cases}
\end{equation*}Then it satisfies following energy identity:
\begin{equation}
\label{Stokes Identity} \tag{6}
\norm{v_1(t)}_2^2+2\int_0^t \norm{\nabla v_1 }_2^2=\norm{v_0}_2.
\end{equation}

Stokes Operator

For $L^q(\Omega)$ where $q\in (1,\infty)$ and $\Omega\subset \R^n$ is $C^2$/half/whole space, we have Holmholtz decomposition $L^q =L^p_\sigma\oplus G_q$, where((See Galdi's III-1,2. Indeed, the second holds only for $u\in C^1$.))
\begin{equation*}
\begin{split}
G_q(\Omega)\coloneqq & \{u\in L^q| \exists p\in W^{1,q}_{loc}, \nabla p=u \},\\
L^q_\sigma(\Omega)\coloneqq \ol{\Di_\sigma}^{q}&= \{u\in L^q| \int u\cdot \varphi=0, \forall \varphi\in G_{q'} \}\\
&= \{u\in L^q| \nabla \cdot u=0, u\cdot n_{|\partial \Omega}=0 \}.
\end{split}
\end{equation*}We define the Holmholtz projection as $P_q: L^{q}\mapsto L^q_{\sigma}$, and furthermore
$$A_q\coloneqq -P_q\Delta: W^{1,q}_{0,\sigma}\cap W^{2,q}\to L^q_\sigma, $$here $W^{1,q}_{0,\sigma}=\ol{\Di_\sigma}^{1,q}=\{u\in W^{1,q}| \nabla \cdot u=0,$$ u_{|\partial \Omega}=0 \}$. $A_q$ is a densely defined closed operator in $L^q_\sigma$ and self-adjoint.((See https://www.math.colostate.edu/~pauld/M646/StokesOperator.pdf. )) Now we attempt to find the resolvent estimate of $-A_q$, before this we introduce the fan-shaped area: ((Especially, $\sum_{\pi ,0}=\C\setminus (-\infty, 0]$.))
$$\Sigma_{\theta, \epsilon}=\{\lambda \in \C| |\arg \lambda|\sl \theta, |\lambda |>\epsilon \} ,$$especially, we denote $\Sigma_{\theta,0}=\Sigma_{\theta}$.

For any $q\in (1,\infty),\theta\in (\frac \pi 2,\pi ),\lambda\in \Sigma_{\theta,0}$, there exists $C_{\theta, q}$ such that
\begin{equation}
\label{Resolvent Estimate} \tag{Resolvent Estimate}
\norm{(\lambda +A_q )^{-1} f}_{q}\le \frac{C_{\theta, q }}{\lambda}\norm{f}_q,\forall f\in L^{q}_\sigma.
\end{equation}

This problem can be reduced to estimate of the solution of following Stokes equations:
\begin{equation}
\label{Stokes} \tag{Stokes}
\begin{cases}
(\lambda-\Delta) u+\nabla p=f,\\
\nabla \cdot u=0,\\
u_{|\partial \Omega}=0.
\end{cases}
\end{equation}Consider the above function in $L^q$ sense, the last two conditions implies $u\in W^{1,q}_{0,\sigma}=D(A_q)$, then we can function $P_q$ on the both side of first equation to get((Note $D(A_q), L^q_\sigma$ both implies $\nabla \cdot v=0$, thus $P_q$ functions null.))
\begin{equation*}
(\lambda +A_q) u=f\Longrightarrow u=(\lambda+A_q )^{-1}f.
\end{equation*}Then the resolvent estimate of $-A_q$ is transformed to $(p,p)$ estimate of \eqref{Stokes}, which is a elliptic system. Thus we are able to reach it by Potential method: recall that for Laplace equation $-\Delta u=f$, we take Fourier transform on both side to get:
\begin{equation*}
\xi^2 \hat u=\hat f\Longrightarrow u= \Fi^{-1}\br{\frac{1}{\xi^2}}* f=\Gamma *f.
\end{equation*}and then use this representation to get the estimate. The similar fact holds for \eqref{Stokes},((See Giga.)) where $u=K*f$ and
\begin{equation*}
\hat K= \frac{\delta_{ij}-\frac{\xi_i\xi_j}{|\xi|^2} }{\lambda+|\xi|^2}.
\end{equation*}And we have

Let $p\in (1,\infty)$. Then for any $\theta\sl \pi $ there exists $C_{\theta,q}$ such that
\begin{equation*}
\norm{u}_q\le \frac{C_{\theta, q }}{|\lambda|} \norm{f}_q,\forall f\in L^q.
\end{equation*}

The above estimate implies \eqref{Resolvent Estimate} directly.

Before this, we introduce the semigroup estimate for Stokes operator first:

Suppose $1\sl p\le q$, then we have
\begin{equation*}
\label{SE1} \tag{SE1}
\begin{split}
\norm{e^{-tA} P v }_q\le & Ct^{-\frac{3}{2}(\frac 1p-\frac 1q ) } \norm{v}_p;\\
\norm{e^{-tA} P\nabla v }_q\le & Ct^{ -\frac 12-\frac{3}{2}(\frac 1p-\frac 1q ) } \norm{v}_p;\\
\norm{\nabla e^{-tA} P v }_q\le & Ct^{-\frac 12 -\frac{3}{2}(\frac 1p-\frac 1q ) } \norm{v}_p;\\
\end{split}
\end{equation*}
We prove it later.
If $p\sl q, v\in L^p$, then we have
\begin{equation*}
t^{\frac 32( \frac 1p-\frac 1q) }\norm{e^{-tA}P v }_q\to
\begin{cases}
\norm{Pv }_p, & \text{as } p=q,t\to 0;\\
0, & \text{as } p\sl q, t\to 0;\\
0, & \text{as } p=q, t\to \infty ;\\
0, & \text{as } p\sl q, t\to \infty .
\end{cases}
\end{equation*}
Alt text
Asmyptotic Behavior
Clearly $\norm{e^{-tA}P v }_p \xrightarrow{t\to 0} \norm{Pv}_p$ holds since $e^{-tA} $ is a strong continuous semigroup. For the remained case, we consider $u\in L^p\cap L^r$, where $r\in (1,q]$. Then
\begin{equation*}
\begin{split}
t^{\frac 32(\frac 1p-\frac 1q ) }\norm{e^{-tA} Pv }_q\le& t^{\frac 32(\frac 1p-\frac 1q ) }\norm{e^{-tA} P(v-u) }_q+t^{\frac 32(\frac 1p-\frac 1q ) }\norm{e^{-tA} Pu }_q\\
\le &C\norm{v-u }_p+ t^{\frac 32(\frac 1p-\frac 1q ) }\cdot C t^{-\frac 32(\frac 1r-\frac 1q ) }\norm{u}_r\\
\le & C\norm{v-u}_p+t^{\frac 32(\frac 1p-\frac 1r ) }\norm{u}_r.
\end{split}
\end{equation*}Since $L^p\cap L^r$ is dense in $L^p$, we can always set $\norm{v-u}_q\to 0 $. As for the latter,

  1. when $t\to 0, p\sl q$: we choose $r\in (p,q]$, then $\frac 32(\frac 1p-\frac 1r )>0\Longrightarrow t^{\frac 32(\frac 1p-\frac 1r ) }$$\norm{u}_r\xrightarrow{t\to 0 } 0; $
  2. when $t\to \infty, p\le q$: we choose $r\in (1,p)$, then $\frac 32(\frac 1p-\frac 1r )\sl 0\Longrightarrow t^{\frac 32(\frac 1p-\frac 1r ) }$$\norm{u}_r\xrightarrow{t\to \infty } 0.$

In conclusion, $t^{\frac 32( \frac 1p-\frac 1q) }\norm{e^{-tA}P v }_q\to 0 $ holds for the remained three cases.

Analytic Semigroup

Suppose $\{T_{z}\}\subset L(X),z\in \Sigma_{\theta}\cup\{0\}, $, we say $T_z$ is a analytic semigroup of angle $\theta$ if

  1. $T_z$ satisfies semigroup properties: $T_0=0, T_{z_1}T_{z_2}=T_{z_1+z_2}$;
  2. $T_z$ is analytic in $z$ in the sense of uniform operator topology.

Suppose $A$ is densely defined and closed on $X$, then $A$ generates an analytic semigroup of angle $\theta(\theta\in (0,\frac \pi 2 ))$ iff

  1. $\rho(A)\supset \Sigma_{\frac \pi 2+\theta }$;
  2. $\norm{R(\lambda, A ) }\le \dfrac{C }{|\lambda | },\forall \lambda \in \Sigma_{\frac \pi 2+\theta } $.

In this case, the semigroup is figured as
\begin{equation*}
e^{zA}=\frac 1{2\pi i }\int_\gamma e^{\lambda z }R(\lambda ,A )d\lambda, z\in \Sigma_{\theta}.
\end{equation*}$\gamma$ is an admissible curve defined by: $$\gamma= - e^{-i(\frac \pi 2+ \eta)}[r, \infty)+ r e^{i(- \frac \pi 2-\eta, \frac \pi 2 +\eta )} +e^{i(\frac \pi 2+ \eta)}[r, \infty), \eta\in (\frac {|\arg z|+\theta}{2}, \theta ), r\sl |z|.$$((Details see this lecture and Wikipedia.))

Consequently, the resolvent estimate implies $A_q$ generates a analytic semigroup $e^{zA_q}$ of angle $\theta$, for any $\theta \in (0, \frac \pi 2)$.

  • Ellat

    Shall we exchange links? My website https://zetds.seychellesyoga.com/info

    2024-01-24
  • Jacquelinet

    The offer is still valid. Details https://zetds.seychellesyoga.com/info

    2024-01-24
  • Miat

    Shall we exchange links? My website https://zetds.seychellesyoga.com/info

    2024-01-24
  • Kellyt

    Shall we exchange links? My website https://zetds.seychellesyoga.com/info

    2024-01-24
  • Jodiet

    Content for your website https://zetds.seychellesyoga.com/info

    2024-01-24
  • Rebeccat

    Can provide a link mass to your website https://zetds.seychellesyoga.com/info

    2024-01-25
  • Irmat

    Your site's position in the search results https://zetds.seychellesyoga.com/info

    2024-01-25
  • Mollyt

    Free analysis of your website https://zetds.seychellesyoga.com/info

    2024-01-25
  • Monicat

    Content for your website https://zetds.seychellesyoga.com/info

    2024-01-25
  • Ivyt

    Can provide a link mass to your website https://zetds.seychellesyoga.com/info

    2024-01-26
  • Constancet

    Your site's position in the search results https://zetds.seychellesyoga.com/info

    2024-01-26
  • Rebeccat

    Your site's position in the search results https://zetds.seychellesyoga.com/info

    2024-01-26
  • Cherilt

    I offer mutually beneficial cooperation https://zetds.seychellesyoga.com/info

    2024-01-27
  • Wendyt

    Cool website. There is a suggestion https://zetds.seychellesyoga.com/info

    2024-01-27
  • Irenet

    I really liked your site. Do you mind https://zetds.seychellesyoga.com/info

    2024-01-28
  • Nicolet

    Here's what I can offer for the near future https://zetds.seychellesyoga.com/info

    2024-01-28
  • Lilliant

    You will definitely like it https://zetds.seychellesyoga.com/info

    2024-01-28
  • Juliat

    Content for your website https://ztd.bardou.online/adm

    2024-01-28
  • Kimberlyt

    Web Development Wizards https://ztd.bardou.online/adm

    2024-01-28
  • Teresat

    Can provide a link mass to your website https://ztd.bardou.online/adm

    2024-01-29
  • Dianat

    Your site's position in the search results https://ztd.bardou.online/adm

    2024-01-29
  • Camillat

    Free analysis of your website https://ztd.bardou.online/adm

    2024-01-29
  • Maggiet

    SEO Optimizers Team https://ztd.bardou.online/adm

    2024-01-30
  • Nicolet

    I offer mutually beneficial cooperation https://ztd.bardou.online/adm

    2024-01-30
  • Edisont

    Cool website. There is a suggestion https://ztd.bardou.online/adm

    2024-01-30
  • Jodiet

    I really liked your site. Do you mind https://ztd.bardou.online/adm

    2024-01-30
  • Ellat

    Here's what I can offer for the near future https://ztd.bardou.online/adm

    2024-01-31
  • Maggiet

    Content for your website https://ztd.bardou.online/adm

    2024-01-31
  • Violat

    Web Development Wizards https://ztd.bardou.online/adm

    2024-01-31
  • Rutht

    Can provide a link mass to your website https://ztd.bardou.online/adm

    2024-01-31
  • Louiset

    Your site's position in the search results https://ztd.bardou.online/adm

    2024-01-31
  • Elizabetht

    Free analysis of your website https://ztd.bardou.online/adm

    2024-02-01
  • Dianat

    SEO Optimizers Team https://ztd.bardou.online/adm

    2024-02-01
  • Margarett

    I offer mutually beneficial cooperation https://ztd.bardou.online/adm

    2024-02-01
  • Zoet

    Cool website. There is a suggestion https://ztd.bardou.online/adm

    2024-02-01
  • Victoriat

    Content for your website http://myngirls.online/

    2024-02-02
  • Isabellat

    Web Development Wizards http://myngirls.online/

    2024-02-02
  • Pollyt

    Can provide a link mass to your website http://myngirls.online/

    2024-02-02
  • Cecilt

    Your site's position in the search results http://myngirls.online/

    2024-02-02
  • Lucyt

    Free analysis of your website http://myngirls.online/

    2024-02-03
  • Vanessat

    SEO Optimizers Team http://myngirls.online/

    2024-02-03
  • Irist

    I offer mutually beneficial cooperation http://myngirls.online/

    2024-02-04
  • Victoriat

    Content for your website http://fertus.shop/info/

    2024-02-04
  • Isabellat

    Web Development Wizards http://fertus.shop/info/

    2024-02-05
  • Pollyt

    Can provide a link mass to your website http://fertus.shop/info/

    2024-02-05
  • Cecilt

    Your site's position in the search results http://fertus.shop/info/

    2024-02-05
  • Lucyt

    Free analysis of your website http://fertus.shop/info/

    2024-02-06
  • Annett

    Hi jst wanted to gikve youu a quick heads uup and let you kow a feew off tthe
    images aren't loadibg correctly. I'm not sure wwhy but I think its a linking
    issue. I've tried iit inn two differemt browsers and both sgow
    the same outcome.

    Also visit myy webpage <a href="https://bilivideos.com/sitemap6.xml">sitemap</a&gt;

    2024-02-06
  • Vanessat

    SEO Optimizers Team http://fertus.shop/info/

    2024-02-06
  • Peggyt

    Cool website. There is a suggestion http://fertus.shop/info/

    2024-02-08
  • Catharine

    I'd like to ffind ouut more? I'd want too fid oout more details.

    Alsoo visit mmy blog :: <a href="https://bilivideos.com/sitemap5.xml">sitemap</a&gt;

    2024-02-08
  • Carolinet

    I really liked your site. Do you mind http://fertus.shop/info/

    2024-02-08
  • Lindat

    Here's what I can offer for the near future http://fertus.shop/info/

    2024-02-09
  • Tracyt

    You will definitely like it http://fertus.shop/info/

    2024-02-09
  • Idat

    The best prices from the best providers http://fertus.shop/info/

    2024-02-10
  • Patriciat

    Additional earnings on your website http://fertus.shop/info/

    2024-02-10
  • Camillat

    Analytics of your website http://fertus.shop/info/

    2024-02-11
  • Lesleyt

    I would like to post an article http://fertus.shop/info/

    2024-02-12
  • Tiffanyt

    How to contact the administrator on this issue http://fertus.shop/info/

    2024-02-12
  • Gwinnettt

    Shall we exchange links? My website http://fertus.shop/info/

    2024-02-13
  • Paget

    The offer is still valid. Details http://fertus.shop/info/

    2024-02-13
  • Leilat

    Content for your website http://fertus.shop/info/

    2024-02-14
  • Susannat

    Web Development Wizards http://fertus.shop/info/

    2024-02-15
  • Randy

    Heya i'm for the first time here. I found this board and I
    in finding It truly useful & it helped me out a lot. I am hoping to provide one thing again and aid others such as you aided me.

    Also visit my site ... <a href="https://www.sfgate.com/market/article/buy-instagram-followers-18658799.php">free followers and likes for instagram</a>

    2024-02-16
  • Normat

    Your site's position in the search results http://fertus.shop/info/

    2024-02-16
  • Isabellat

    Web Development Wizards http://fertus.shop/info/

    2024-02-17
  • Cecilt

    Your site's position in the search results http://fertus.shop/info/

    2024-02-18
  • Vanessat

    SEO Optimizers Team http://fertus.shop/info/

    2024-02-19
  • tlovertonet

    Hello.This article was extremely remarkable, especially because I was investigating for thoughts on this issue last Saturday.

    http://www.tlovertonet.com/

    2024-05-12
  • tlover tonet

    It’s hard to find knowledgeable people on this topic, but you sound like you know what you’re talking about! Thanks

    http://www.tlovertonet.com/

    2024-05-24
  • Janna

    I like it when folks get together and share thoughts.
    Great site, continue the good work!

    Here is my website - <a href="https://archdeco.ge/">เว็บแทงหวย</a&gt;

    2024-05-27
  • coffee loophole

    I believe other website owners should take this website as an model, very clean and excellent user friendly design and style.

    https://youtu.be/bKOJ-Id_jNg

    2024-06-11
  • lottery defeater

    One such software that has been generating buzz these days is the Lottery Defeater

    https://youtu.be/TLpP-0ffW_8

    2024-06-12
  • Gut optim reviews

    You got a very excellent website, Gladiola I noticed it through yahoo.

    https://youtu.be/D3Oaq47iplw

    2024-06-16
  • Java Burn

    Hi, i think that i saw you visited my site thus i came to “return the favor”.I'm trying to find things to enhance my site!I suppose its ok to use a few of your ideas!!

    https://youtu.be/sNqZhNAVXaQ

    2024-06-18
  • Pronail Complex

    I love it when people come together and share opinions, great blog, keep it up.

    https://youtu.be/Is-5ef3Zk4A

    2024-06-18
  • hire a hacker

    Excellent blog here! Also your web site loads up very fast! What host are you using? Can I get your affiliate link to your host? I wish my web site loaded up as fast as yours lol

    https://www.axilusonline.com/

    2024-06-19
  • Auto Lotto Processor

    Nice post. I learn something more challenging on different blogs everyday. It will always be stimulating to read content from other writers and practice a little something from their store. I’d prefer to use some with the content on my blog whether you don’t mind. Natually I’ll give you a link on your web blog. Thanks for sharing.

    https://youtu.be/dB0n37qyMc4

    2024-06-19
  • midget light bulbs

    I see something truly special in this site.

    https://www.ledlightbulb.net/index.php?main_page=index&cPath=174

    2024-06-21