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Abstract

Here we give a self-contained new proof of the partial regularity theorems for solutions of
incompressible Navier-Stokes equations in three spatial dimensions. These results were origi-
nally due to Scheffer and Caffarelli, Kohn, and Nirenberg. Our proof is much more direct and
simpler. c© 1998 John Wiley & Sons, Inc.

1 Introduction

This paper is concerned with the partial regularity of weak solutions of the
incompressible Navier-Stokes equations in three spatial dimensions with unit
viscosity and zero external force:{

vt + v · ∇v −∆v +∇p = 0 , v(x, t) ∈ R3 ,

div v = 0 .
(1.1)

Of particular interest is the initial boundary value problem on a bounded,
smooth domain Ω ⊆ R3. In addition to (1.1) on Ω× (0, t), one requires

{
v(x, 0) = v0(x) , x ∈ Ω ,

v(x, t) = 0 , x ∈ ∂Ω , 0 < t < T .
(1.2)

Here the initial data should satisfy

v0(x) = 0 , x ∈ ∂Ω , and div v0 = 0 in Ω .(1.3)

The concepts of weak solutions of (1.1)–(1.2) and their regularity were
already introduced in the fundamental paper of J. Leray [10]. Pioneering
works of Leray [10] and Hopf [5] showed the existence of a function v and a
distribution P such that

(i) v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) for each T <∞ ;

(ii) equations (1.1) hold weakly;
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(iii) ∫
Ω×{t}

|v|2 dx+ 2
∫ t

0

∫
Ω
|∇v|2 dx dt ≤

∫
Ω
|v0|2 dx

and

lim
t→0+

‖v( · , t)− v0( · )‖ = 0

whenever v0 ∈ L2(Ω) (cf. [22, chap. III]).

There are many important results concerning the regularity of weak solu-
tions. Among them we wish to mention the work of Serrin [19], which asserts
that if a weak solution v of (1.1) also satisfies that v ∈ Lp(0, T ;Lq(Ω)) for
some p, q ≥ 1 so that 2/p+ 3/q < 1, then v is smooth in the spatial direction.
This result was later improved in [21] and [2] to the case of equality.

It is also well-known that if v0 is smooth enough, then problems (1.1)–(1.3)
have a unique solution on Ω× (0, T ) for some T > 0; see, for example, [7],
[4], [6], [13], [23], and the references therein.

In a series of papers [15, 16, 17, 18], Scheffer introduced the notions of
“suitable weak solutions” and the “generalized energy inequality.” He estab-
lished various partial regularity results for such weak solutions; see also an
interesting related work of Foias and Temam [3]. Scheffer’s results were further
generalized and strengthened in the paper of Caffarelli, Kohn, and Nirenberg
[1], where the best partial regularity theorem to date was proved.

The purposes of this paper are to further elucidate the main ideas of the
partial regularity theory, to discuss a few unsolved issues in [1], and to give
simpler proofs of the main results of [1]. Part of the simplification is due to
the better estimate of Sohr and von Wahl [20] on the pressure P , which was
developed after the publication of [1]; see Lemma 2.3 below. Another part
of the simplification is due to the fact that we worked with somewhat more
natural quantities.

Throughout the paper, we shall use the notation in [22].

2 Preliminaries

There are two key ingredients in the proof of the partial regularity theorem.
The first one is the often-used interpolation inequality, which follows:
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For v ∈ H1(Br), one has

∫
Br
|v|q dx ≤ c

(∫
Br
|∇v|2 dx

)q/2−a
·
(∫

Br
|v|2 dx

)a
+

c

r2a

(∫
Br
|v|2 dx

)q/2(2.1)

for all 2 ≤ q ≤ 6, a = 3(q − 2)/4. Here Br is a ball of radius r in R3.
In fact, we also need the following variation of (2.1) (cf. lemma 5.2 in [1]):

LEMMA 2.1 If 0 < r ≤ ρ, then

C(r) ≤ c
[(

r

ρ

)3
A3/2(ρ) +

(
ρ

r

)3
A(ρ)3/4B(ρ)3/4

]
where

A(r) = sup
−r2≤t≤0

1
r

∫
Br(0)×{t}

|v|2 dx ,

B(r) =
1
r

∫
Qr

∫
|∇v|2 dx dt ,

C(r) =
1
r2

∫
Qr

∫
|v|3 dx dt ,

Qr =
{

(x, t) ∈ R3 × R : |x| ≤ r, −r2 ≤ t ≤ 0
}
.

PROOF: At almost every time we estimate∫
Br
|v|2 dx =

∫
Br

(
|v|2 − |v̄|2ρ

)
dx+

∫
Br
|v̄|2ρ dx

≤
∫
Bρ

∣∣∣|v|2 − |v̄|2ρ∣∣∣ dx+
∫
Br
|v̄|2ρ dx

≤ cρ

∫
Bρ
|v| |∇v| dx+ c

(
r

ρ

)∫
Bρ
|v|2 dx

using Poincaré’s inequality on the first term. Here

f̄ρ =
1
|Bρ|

∫
Bρ

f dx .

Thus ∫
Br
|v|2 dx ≤ cρ3/2A1/2(ρ)

(∫
Bρ
|∇v|2 dx

)1/2

+ c

(
r

ρ

)3
ρA(ρ) .(2.2)
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By combining (2.1) and (2.2), one obtains that

∫
Br
|v|3 dx ≤ c

(∫
Br
|∇v|2 dx

)3/4
(∫

Bρ
|v|2 dx

)3/4

+
c

r3/2

(∫
Bρ
|v|2 dx

)3/2

+ c

(
r

ρ

)3/4
A3/2(ρ)

+ c

(
ρ3/4 +

ρ9/4

r3/2

)
A3/4(ρ)

(∫
Bρ
|∇v|2 dx dt

)3/4

.

Therefore, by integrating from −r2 to 0 and applying Hölder’s inequality, we
obtain that∫

Qr

∫
|v|3 dx dt

≤ cr2
(
r

ρ

)3
A(ρ)3/2

+ c

(
ρ3/4 +

ρ9/4

r3/2

)
r1/2A(ρ)3/4

(∫
Qρ

∫
|∇v|2 dx dt

)3/4

.

The conclusion of Lemma 2.1 follows.

The second key ingredient is the so-called generalized energy inequality,
which makes the Leray-Hopf theory localizable. A weak solution (v, P ) of
(1.1) is said to satisfy the generalized energy inequality if

2
∫ T

0

∫
Ω
|∇v|2 φ dx dt ≤

∫ T

0

∫
Ω
|v|2(φt + ∆φ) dx dt

+
∫ t

0

∫
Ω

(|v|2 + 2P ) v · ∇φ dx dt
(2.3)

for all nonnegative φ ∈ C∞0 (Ω× (0, T )).
Let us recall that a well-known property of weak solutions is the weak

continuity of v as a function of time (see [22, pp. 281–282]. This says∫
Ω
v(x, t) ·W (x) dx −→

∫
Ω
v(x, t0) ·W (x) dx(2.4)

for each W ∈ L2(Ω) as t → t0 ∈ [0, T ]. An easy consequence of (2.3) and
(2.4) is the following form of the generalized energy inequality:
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For 0 < t < T and for each smooth, compactly supported φ ≥ 0,

∫
Ω×{t}

|v|2 φ dx+ 2
∫ t

0

∫
Ω
|∇v|2 φ dx dt

≤
∫ t

0

∫
Ω

[
|v|2(φt + ∆φ) + (|v|2 + 2P ) v · ∇φ

]
dx dt .

(2.5)

In [1], the notion of (local) suitable weak solutions of (1.1) in an open set
D ⊆ R3 × R was introduced. A pair (v, P ) is a suitable weak solution of
(1.1) in D if

(i) P ∈ L3/2(D) with
∫
D

∫
|P |3/2 ≤ E, and for some constants E0, E1 <

∞, ∫
Dt
|v|2 dx ≤ E0 , Dt = D ∩ (R3 × {t}) ,

for a.e. t such that Dt 6= φ and∫
D

∫
|∇v|2 dx dt ≤ E1 ;

(ii) (v, P ) satisfies (1.1) in the sense of distributions on D; and

(iii) for each 0 ≤ φ ∈ C∞0 (D), inequality (2.3) is valid.

Note that we have added a pressure L3/2-norm bounded condition here.
It is not at all clear if weak solutions obtained by the well-known Galerkin

approximation procedure (see, for example, [22, chap. III, sec. 3]) are suitable
weak solutions. That is why Caffarelli, Kohn, and Nirenberg used a different
approach to show the existence of such suitable weak solutions in [1]. By
using the estimate of Sohr and Von Wahl [20] for the pressure, one can show
the following compactness result, which indicates the existence of such weak
solutions. Indeed, our proofs of Lemma 2.3 and Theorem 2.2 below, along with
the constructions in the appendix to [1], yield such suitable weak solutions.

THEOREM 2.2 Let (vn, Pn) be a sequence of weak solutions of (1.1) in Q1
such that, for some positive constants E,E0, E1 <∞, one has

(a)
∫
B1×{t}

|vn|2 dx ≤ E0 for a.e. t ∈ (−1, 0);

(b)
∫
Q1

∫
|∇vn|2 dx dt ≤ E1;
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(c)
∫
Q1

∫
|Pn|3/2 dx dt ≤ E; and

(d) (vn, Pn) satisfies (2.3) for n = 1, 2, . . . .

Suppose that (v, P ) is the weak limit of (vn, Pn); then (v, P ) is a suitable
weak solution of (1.1) on Q1.

Let us first prove the L5/3 space-time norm estimates on P (cf. [20]). For
simplicity we take Ω = Q1.

LEMMA 2.3 Let (v, P ) be a weak solution of (1.1)–(1.2) in Q1 with v ∈
L∞(1, 0;H) ∩ L2(−1, 0, V ). Then P ∈ L5/3(−1, 0;L5/3(B1)).

PROOF: Let

q =
30
13
, a =

3
4

(
30
13
− 2

)
=

3
13
,

in the interpolation inequality (2.1). One obtains, for a.e. t, that

‖v‖30/31
L30/13(B1) ≤ c

(∫
B1

|∇v|2 dx
)3/13 (∫

B
|v|2 dx

)12/13

+ c

(∫
B1

|v|2dx
)15/13

.

(2.6)

Thus by Hölder’s inequality,

‖v · ∇v‖5/3
L15/14(B1) ≤ c

[
‖∇v‖2L2(B1) + ‖v‖10

L30/13(B1)

]
.(2.7)

Using (2.6), we have

‖v‖10
L30/13(B1) ≤ c

[
‖v‖2L2(B1) ‖v‖8L2(B1) + ‖v‖10

L2(B1)

]
.(2.8)

Hence

v · ∇v ∈ L5/3
(
−1, 0;L15/14(B1)

)
.(2.9)

Let f = (∂/∂t)v−∆v in B1× (−1, 0); then f ∈ L2(−1, 0, Z). Here Z is the
dual space of H2

0 (Ω). Indeed, smooth, compactly supported φ ∈ C∞0 (B1, R
3)

with divφ = 0 is dense in both H and V . Also, since v(t) is weak continuous
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in t with values in H , we may define a continuous function t, (v(t), φ), for φ
as above. Then the claim follows from the estimate∣∣∣∣(∂v∂t , φ

)∣∣∣∣ = |−(∇v, ∇φ)− (v · ∇v, φ)|

≤ (‖∇v(t)‖L2(B1) + ‖v(t)‖L2(B1) ‖∇v(t)‖L2(B1)) ‖φ‖H2(B1) .

Next, we observe, for a.e. t,{
div f = 0
curl f = curl(v · ∇v)

in B1 .(2.10)

Then the elliptic estimates ([14, chap. 7]) yield

‖f‖5/3
L15/14(B1) ≤ C

[
‖v · ∇v‖5/3

L15/14(B1) + ‖f‖5/3Z

]
.(2.11)

Therefore, by integrating (2.11), one has

∂

∂t
v −∆v ∈ L5/3

(
−1, 0;L15/14(B1)

)
,

and hence the conclusion of Lemma 2.3 follows from

∇P ∈ L5/3
(
−1, 0;L15/14

)
and Sobolev’s inequality.

PROOF OF THEOREM 2.2: We may assume that

vn → v

weakly in L2(−1, 0;V ) and weak-∗ in L∞(−1, 0;H) and that Pn → P weakly
in L3/2(Q1). We wish to show that vn → v strongly in Lq(Q1) for 1 ≤ q < 10

3 .
Indeed, if the last statement is true, then for any smooth φ ≥ 0 compactly
supported in Q1, we have that

2
∫
Q1

∫
|∇v|2 φ dx dt ≤ lim inf

n
2
∫
Q1

∫
|∇vn|2 φ dx dt

by Fatou’s lemma and that the right-hand sides of (2.3) (with vn in the places
of v) converge to the desired form as vn → v strongly in L3(Q1) and Pn → P

weakly in L3/2
loc (Q1). The result of Theorem 2.2 follows.
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To show the strong convergence of vn, we first establish the certain uniform
weak continuity of vn as functions of time t. In fact, we let Z be the dual of
H2

0 (B1); then the equations

∂vn
∂t

+ vn · ∇vn +∇Pn −∆vn = 0 in Q1

and the fact that vn → v weakly in L2(−1, 0;V ), weak-∗ in L∞(−1, 0, H)
along with L3/2-norm bound for Pn imply that

∂

∂t
vn ∈ L3/2(−1, 0; Z) with

∥∥∥∥ ∂∂tvn
∥∥∥∥
L3/2(−1, 0;Z)

≤ C0

for some constant C0 depending only on

sup
n

[
‖vn‖L2(−1,0;V ) + ‖vn‖L∞(−1,0;H) + ‖Pn‖L3/2(Q1)

]
.

Thus each vn ∈ C([−1, 0], Z). Moreover, they are uniformly continuous as
functions of t ∈ [−1, 0] with values in Z.

Now we apply theorem 2.1 of [22, chap. III] to conclude that the vn stay
in a compact set of L3/2(Q1). Therefore vn → v strongly in L3/2(Q1). Since
vn also remains bounded uniformly in L10/3(Q1), we deduce that vn → v
strongly in Lq(Q1) for all 1 ≤ q < 10

3 .

REMARK 2.4 Let (vn, Pn) be as in Theorem 2.2. Then vn → v weakly
in L2(−1, 0;V ) and weak-∗ in L∞(−1, 0;H). By the weak continuity of v
in time, we see, for any t0 ∈ [−1, 0], v(x, t0) is a well-defined function in
L2(B1). We claim vn(x, t0)→ v(x, t0) weakly in L2(B1) as n→∞. Indeed,
for any nk → ∞, there is a subsequence on {vnk} that converges weakly to
ṽ(x, t0) for some ṽ(x, t0) ∈ L2(B1). It suffices to verify ṽ(x, t0) = v(x, t0).

To do so we let φ(x) ∈ C2
0(B1) with divφ = 0, and let η(t) ≥ 0 be

smooth and compactly supported in a δ-neighborhood of t0 ∈ [−1, 0] with∫ 1

0
η(t)dt = 1 .

By the weak continuity of v(·, t) in t, we have∫
Q1

∫
η(t) v(x, t) · φ(x) dx dt =

∫
Q1

∫
η(t) v(x, t0) · φ(x) dx dt+ o(1) .

Here o(1)→ 0 as δ → 0.
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One also has that∫
Q1

∫
η(t) v(x, t) · φ(x) dx dt =

∫
Q1

∫
η(t) vnk(x, t) · φ(x) dx dt+ o(1) ;

here o(1)→ 0 as nk →∞.
Finally, by the uniform weak continuity of vn(·, t) in t,∫

Q1

∫
η(t) vnk(x, t) · φ(x) dx dt =

∫
Q1

∫
η(t) vnk(x, t0) · φ(x) dx dt+ o(1) ,

when o(1)→ 0 as δ → 0 (independently of nk). We thus arrive at∫
B1

v(x, t0) · φ(x) dx =
∫
B1

ṽ(x, t0) · φ(x) dx .

Since φ ∈ C2
0(B1) with divφ = 0 is arbitrary, v(x, t0) = ṽ(x, t0).

3 Partial Regularity Theorem

Let (v, P ) be a suitable weak solution of (1.1) in Q1.

THEOREM 3.1 There are two positive constants ε0 and C0 such that∫
Q1

∫ [
|v|3 + |P |3/2

]
dx dt ≤ ε0

implies
‖v(x, t)‖Cα(QK) ≤ C0 for some α > 0 .

Here Qr = {(x, t), |x| ≤ r, −r2 ≤ t ≤ 0}.

To prove this theorem, we start with the following:

LEMMA 3.2 Suppose that∫
Q1

∫ [
|v|3 + |P |3/2

]
dx dt ≤ ε0

for some sufficiently small ε0. Then

θ−5
∫
Qθ

∫ [ |v − vθ|3
θα0

+
|P − Pθ(t)|3/2

θα0

]
dx dt

≤ 1
2

∫
Q1

∫ [
|v|3 + |P |3/2

]
dx dt

(3.1)
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for some positive constant θ and α0 ∈ (0, 1
2) where

vθ = θ−5
∫ ∫

Qθ

v(y, τ)dy dτ ,

Pθ(t) = θ−3
∫
Bθ×{t}

P (y, t) dy for − θ2 ≤ t ≤ 0 .

PROOF: Suppose that Lemma 3.2 is false. Then there would be a sequence
of weak solutions (vi, Pi) with

εi = ‖vi‖L3(Q1) + ‖Pi‖L3/2(Q1)

and such that (3.1) is not valid for (vi, Pi). Let

ui =
vi
εi
, P̃i =

Pi
εi

;

then

∂

∂t
ui + εiui∇ui +∇P̃i = ∆ui .(3.2)

A simple computation also verifies that (ui, P̃i) is a suitable weak solution of
(3.2). One also notices that

∆P̃i = −εi
∂uki
∂xl

∂uli
∂xk

in D(Q1) .(3.3)

It follows from the generalized energy inequality (2.5) that the ui’s lie in a

bounded set of L∞(−1, 0; L2
loc(B1) ∩ L2(−1, 0; H1

loc(B1)), and hence they

lie in a bounded set of L10/3(−1, 0; L10/3
loc (B1)) by (2.1).

Since P̃i is bounded in L3/2(Q1), it thus follows from the proof of The-
orem 2.2 that ui converges strongly (by taking subsequences if needed) in
L3(−1, 0; L3

loc(B1)). Let (u, P ) be a weak limit of (ui, P̃i); then (3.2) im-
plies that {

∂u
∂t +∇P = ∆u
div u = 0

in Q1 .(3.4)

By lower semicontinuity, one has that∫
Q1

∫
|u|3 dx dt ≤ 1 ,

∫
Q1

∫
|P |3/2 dx dt ≤ 1 .(3.5)
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A simple estimate for the Stokes equation yields that u and P are smooth
in the spatial variable and that u is Hölder continuous in the time variable
with, say, exponent 2α0. Thus, for suitable θ ∈ (0, 1

2), one has

θ−5
∫
Qθ

∫
|u− uθ|3 dx dt ≤

1
4
θα0 .(3.6)

Since ui → u strongly in L3(−1, 0;L3
loc(B1)), we have

θ−5
∫
Qθ

∫
|ui − ui, θ|3 dx dt ≤

1
3
θα0 for all sufficiently large i .(3.7)

Next we consider P̃i. By (3.3), we may write, for a.e. t ∈ (−1, 0), that

P̃i(x, t) = hi(x, t) + gi(x, t) , x ∈ B2/3 .(3.8)

Here {
∆gi(·, t) = −εi ∂uki /∂xl∂uli/∂xk in B2/3

gi( · , t) = 0 on ∂B2/3 .
(3.9)

Hence h(·, t) is harmonic in B2/3.
Let

P̃i,θ(t) = θ−3
∫
Bθ

hi(x, t) dx ≡ hi,θ(t) ;

then ∫
Qθ

∫
|P̃i − P̃i,θ|3/2 dx dt ≤ C0

∫
Qθ

∫
|hi − hi,θ(t)|3/2 ,

C0

∫
Qθ

∫
|gi|3/2 dx dt ≤ C0θ

5 · θ3/2 + C0εi

∫
Q3/2

∫
|ui|3 dx dt .

(3.10)

Here we have used the Calderon-Zygmund estimate for gi by (3.9). The
latter also implies that hi is bounded in L3/2(−1, 0;L3/2(B2/3)) as both P̃i
and gi are. Thus the first term in the right-hand side of (3.10) follows from
the interior estimate for harmonic functions.

It is obvious from (3.10) that

θ−5
∫
Qθ

∫
|P̃i − P̃i, θ|3/2 dx dt ≤

1
3
θα0(3.11)

for a suitable positive θ ∈ (0, 1
2) and for all sufficiently large i.

Combining (3.11) and (3.7) we obtain a contradiction. Thus the lemma is
proven.
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PROOF OF THEOREM 3.1: Let (v, P ) be a suitable weak solution such
that ∫

Q1

∫ [
|v|3 + |P |3/2

]
dx dt ≤ ε0 .

Let

v1(x, t) =
v − vθ
θα0/3

(θx, θ2t) ,

P1(x, t) = θ1−α0/3
(
P (θx, θ2t)− Pθ(t)

)
.

Again, a direct computation yields that (v1, P1) is a suitable weak solution of

∂v1

∂t
+ θ(vθ + θα0/3v1) · ∇v1 +∇P1 = ∆v1 in Q1 .(3.12)

Moreover, Lemma 3.2 implies that∫
Q1

∫ [
|v1|3 + |P1|3/2

]
dx dt ≤ ε0

2
.(3.13)

We repeat the same arguments as in the proof of Lemma 3.2 except that (3.4)
is replaced by {

∂u
∂t +~b · ∇u+∇P = ∆u
div u = 0

in Q1 .(3.14)

Here ~b = limi θvi, θ is a constant with |~b| ≤ 1. Note that vi, θ → 0 as εi → 0
(cf. the proof of Lemma 3.2).

Therefore we conclude that

θ−5
∫
Qθ

∫ [ |v1 − v1,θ|3
θα0

+
|P1 − P1,θ|3/2

θα0

]
dx dt

≤ 1
2

∫
Q1

∫ [
|v1|3 + |P1|3/2

]
dx dt ≤ 1

4
ε0 .

(3.15)

By a simple iteration, we then conclude that

r−5
∫
Qr

∫
|v − vr|3 dx dt ≤ Cε0r

α0(3.16)

for all r ∈ (0, 1
2). Thus v is Hölder continuous in (x, t). The conclusion of

Theorem 3.1 follows.
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The main result of [1] can be deduced from the following theorem (cf. also
[12]):

THEOREM 3.3 There is a positive constant ε0 such that if

lim sup
r→0

r−1
∫
Qr

∫
|∇v|2 dx dt ≤ ε0 ,

then there are θ0, r0 ∈ (0, 1) such that either

A3/2(θ0r) +D2(θ0r) ≤
1
2

(
A3/2(r) +D2(r)

)
or

A3/2(r) +D2(r) ≤ ε1 � 1

where 0 < r < r0, and

A(r) = sup
−r2≤t≤0

r−1
∫
Br×{t}

|v|2 dx , D(r) = r−2
∫
Qr

∫
|P |3/2 dx dt .

PROOF OF THEOREM 3.3: We also define

B(r) = r−1
∫
Qr

∫
|∇v|2 dx dt , C(r) = r−2

∫
Qr

∫
|v|3 dx dt .

Here θ0 ∈ (0, 1
4), which will be chosen later.

First we have Lemma 2.1, which says

C(r) ≤ C0

[(
r

ρ

)3
A(ρ)3/2 +

(
ρ

r

)3
A(ρ)3/4B(ρ)3/4

]
(3.17)

for 0 < r < ρ (cf. [1, lemma 5.2]). Next, we want to control D(r).

LEMMA 3.4 Let (v, p) be a weak solution of (1.1) in Q1. Then, for almost
all t ∈ (−1

2 , 0), one has∫
Bθ×{t}

|p|3/2 ≤ Cθ0
∫
B1×{t}

|v − v̄|3 dx+ C0

∫
B1×{t}

|p|3/2 dx

for all θ ∈ (θ0,
1
4).
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PROOF: Since, for a.e. t ∈ (−1
2 , 0), one has ∆p = ∂xiv

j∂xjv
i in D′(B1),

we may write p = p0 + h in Bρ. Here ρ ∈ (1
2 , 1) is chosen so that∫

∂Bρ
|p|3/2 dσ ≤ 3

∫
B1

|p|3/2 dx ,

where {
∆p0 = ∂xi (vj − v̄j) ∂xj (vi − v̄i) in Bρ ,

p0 = 0 on ∂Bρ ,

and {
∆h = 0 in Bρ ,

h = p on ∂Bρ .

Thus(∫
Bθ×{t}

|p|3/2 dx
)3/2

≤
(∫

Bθ×{t}
|p0|3/2 dx

)2/3

+

(∫
Bθ×{t}

|h|3/2 dx
)2/3

.

The first term on the right-hand side of the last inequality is bounded by(
Cθ0

∫
B1×{t}

|v − v̄|3 dx
)2/3

by Calderon-Zygmond’s estimate. The second term can be bounded by

C0

∫
B1×{t}

|p|3/2 dx

due to subharmonicity of |h|3/2 in Bρ and our choice of ρ ∈ (1
2 , 1).

COROLLARY 3.5 For any r ∈ (θ0ρ,
ρ
2), ρ ≤ 1, one has

1
r2

∫
Br×{t}

|p|3/2 dx ≤ Cθ0
1
ρ2

∫
Bρ×{t}

|v − v̄|3 dx+ C0

(
r

ρ

)
1
ρ2

∫
Bρ
|p|3/2 dx .

Thus

D(r) ≤ Cθ0
1
ρ2

∫
Qp

∫
|v − v̄ρ|3 dx dt+ C0

(
r

ρ

)
D(ρ) .(3.18)

Next we use |v|2− |v̄|2 instead of |v|2 in the generalized energy inequality
(2.5). Here

|v̄|2(t) =
∫
Bρ×{t}

|v|2 dy .
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By using Poincaré’s inequality(∫
Bρ×{t}

(
|v|2 − |v̄|2

)3/2
dx

)2/3

≤ cρ
∫
Bρ×{t}

|v| |∇v| dx

and then applying Hölder’s inequality in the integration with respect to time
t, one obtains from (2.5) for a properly chosen cutoff function φ that

A(r) +B(r) ≤ C
[
ρ

r
C(ρ)2/3 +

ρ2/3

r
C(ρ)1/3A(ρ)1/2 B(ρ)1/2

+ · · ·+ ρ

r
C(ρ)1/3D(ρ)2/3

]
.

(3.19)

Similarly, by using Poincaré’s inequality, one obtains from (3.18) that

D(r) ≤ C
[
r

ρ
D(ρ) +

(
ρ

r

)2
B(ρ)3/4A(ρ)3/4

]
.(3.20)

By combining (3.19) with ρ = 2r, (3.17), and (3.20), one may easily deduce
that

A(θ0r)3/2 +D2(θ0r) ≤ C1θ0

(
A(r)3/2 +D2(r)

)
+ ε1

for r ≤ r0. Here C1 is a constant independent of θ0 and ε1 is a constant
depending only on certain powers of θ−1

0 and B(r). By choosing r0 small
enough, we may assume ε1 is also very small. The conclusion of Theorem
3.3 follows. We finally note that the regularity of v at certain points where
the hypothesis of Theorem 3.3 is satisfied follows from the conclusions of
Theorem 3.1 and the decay estimates of Theorem 3.3.

4 Final Remarks

Let (v, P ) be a weak solution of (1.1); then (vλ, Pλ) is also a weak solution
of (1.1) for all λ > 0. Here

vλ(x, t) = λv(λx, λ2t) , Pλ(x, t) = λ2 P (λx, λ2t) .

In other words, v is of dimension −1 and P is of dimension −2. For Leray-
Hopf solutions, one has two basic estimates:

(a)
∫ ∫ [

|v|10/3 + |P |5/3
]
dx dt <∞ and

(b)
∫ ∫
|∇v|2 dx dt <∞.
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Since ∫
Qr

∫ [
|v|10/3 + |P |5/3

]
dx dt

is of dimension 5
3 , Theorem 3.1 says the singular set of suitable weak solutions

is of measure zero with respect to parabolic Hausdorff measure P 5/3. Similarly,
Theorem 3.3 implies the singular set of P 1 measure zero.
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