5.8 Regularity
5.8.1 Scaling and Dimension Analysis

Suppose (v, p) solves (NS) with force f in Q, :== B, x (0,7?), we scaling it as
v, t) = w(hz, \2t), pr (2, t) = N2p(\x, N%t), fA(z,t) = N f(x,t).
Then (v*, p*) solves (NS) with force f* in @, /5. Indeed, we see
(O — Av* + 07 - Vot 4+ V) (2, t)
=0; (M(Az, N’t)) — A(dw(Ax, A*t))
+ Av(Az, A1) - V(Ao(Az, A1) + V (Np(Az, A*t))
=X\* (0w — Av +v - Vo + Vp) (Az, \t)
=\ f(A\x, \°t) = fAx, 1)
for (z,t) € Q,/x. A quantity o(r,v, p, f) is of dimension d if

o(r,v,p, f) =rlo(Lu",p", f7).
Especially, ¢ is called homogenous if it is of dimension 0.
Proposition 5.22. Let v a very weak solution of (NS) in Q1 with f € C* and
ve L®L*NL*H' N L LY Q)
with3/q+s/2 < 1,q > 3, thenv € L>(Q12).
Proof. Indeed, we notice that
[0l oo @y ) S ||VU||L°°L4(Q1/2)1 S IV Xl peepagp + IV -l peragp + 1Vl L ri@n)

forany 0 < 1/2 < R < 1, by Poincare embedding and elliptic estimate. As V - v = 0 and
0]l o1 S ||l oo 2, the remained task is to give a L°° L*-estimate for the vorticity w = V X v.
Now we consider the vorticity equation:
ow—Aw =V x (v-Vv)=w-Vv—v-Vuw
=0w' — Aw' = w9’ — v 0w’ = 9;(wv’ — vw')
=0, — A)w=V-g,¢7 = wv' — v/
We already have w € L?*(Q,) since v € L?H', and the goal is to reach w € L*(Qr)(—

L*L*(QRr)) for some R € (1/2,1) by bootstrap on integrable index and radius. Set the step-

length 0, steps K, step radius  as
s<1-5 2 gs=l L
q s 2 2

14 is the smallest p such that 1 — % >3




and bootstrap:
1
po=2,— — —— =0(s0 pg = );
P Pk+1
1
=1, (= R) > 3"

Suppose w € LPx(Q,2x) for some k < K — 1, now we claim w € LP*1(Q,2x+1)). We decompos-
tion w = Wy + hy as

(0 — A) =V - (Cg), where G(2,t) = Go(r~z,r~%1), ¢ € D(Q,) cutoff on Q,,

$0 (9;— A)h = 0 on Q,2x+1. Then the interior estimate for heat equation implies h € L>(Q?*+1)).
As the LP—estimate for w = @ ., (V - ((rg)) = VP * ({g)', remind

. 3
IVe@)ll, #7735 = V8], 5 S 1, ifa2— 32) < 1 (5.13)

so Young’s and Holder’s interpolation gives:
lill s SIV® % G0l gy S 19l l1Ch0110

§”Vq)Ha,ﬁ||U||s,q||w||LPk(QT2k)
if we can find «, 3, a, b satisfies (5.13) and

(1 1 1 1 N 1 ..
Pr4+1 o a g b ’
1 1 11 1 1

- = 7 — T + R

a s peb q Dk

2 3

-+-=1

\ S q

This can be reach by the selection of §, K, r.A L]

5.8.2 e—regularity
Now we give a significant compactness method to verify the e—regularity criterion. Consider the
following quantities:
(b(zv r, U) = r’sz,T|7 wﬁﬁ(za r, f) = r1+ﬂ‘|f”L272'Y+1(Qz,r);
_2 _4
w(z7 Ty U) =rs ||U||L3(Q(z,fr))7 1/’(37 Ty p) =rs ||p||L%(Q(z,T))7

1
1 3\ ° _2
/C;( )lU — ('U)Q(z,r)} ) =7r 3 ||’U — (,U)ZJ"HL?’(Q(Z*,’I’))’ (514)

ﬁ

1

QD(Z, T, p) =\ = |p - (p)B(z,r) }
" JQ(zr)

®(z,1) is the heat kernel.

o(z,r,v) = <

nojo

_4
) =7730p = P)arll 3 ey




For convenience, we’d like to omit z if z = 0, and denote ¢(r, v, p) == @(r,v) + ¢(r, p), etc. It is
easy to check those dimensions:

o(r,v) = ¢(1,0"),
wﬂﬁ(r? f) = Tﬁ(w*ﬁ)wﬂﬁ(lv fr)7
Y/ o(r,v,p) =P /p(1,0",p");

Proposition 5.23. [|(u), [ g,y < vl Las,)-

Some facts for those quantities are important:

Proposition 5.24. 1. [juw||

The estimate below is necessary for the following iteration.

Lemma 5.25. 3C > 0,V0 < 3,7 < 2,0 € (0, %],362,7“2 € (0,1] such that if Ir < ro, (v,p, f) is
a suitable weak solution of (NS) in ), and

¢(r,v) <1,0(r,v,p) +9(r, f) < e,
then ¢(0r,v) < 1 and (0r,v,p) < CO¥5 (p(r,v,p) + (7, f)).

Remark. Notice that the result can be generalized to z # 0 case.

Proof. The first claim is clear:

&(0r,v) =0r - |Q9r|1/Q (v—wv,) +0Orv,

<C'0r - |Qg7«|1_%_1”1} = V|l pa(q,,) t OV
<C'0 R, 0) + 0(r,v)
1
SCIEQQ_% + § <1
if e, < 03 /(2C"). As for the latter, we prove it by contradiction: if not, then YC' > 0,33 < 7,6 €
1 1
(0, %], Vey, o > O(where we set both as —), if Ir, < —, (v, pn) are SWS of (NS) in @, such that
n n

@/)(Tm Un) < 17 €n = SO(Tm vnapn) + ¢(rna fn) <

)

S|

then (07, U, pn) > COYE (0(7n, Un, pn) + U1, fn)) = Ce,0'75. Before the contradiction,
first we take a scaling by following formulation:

(bnaunaqmgn) = ((vzn)laer_zl(v:;n - (U:Ln)l)76;1(p;n - (p;n)1)>€n f;") :



Then the homogeneity of ¢/ and ¢ transform the above relations as

—1, (5.15)

[bal < 101 ttns ) + 7,001, 9) = unlly + llanlls + 77 g

and the claim: VC > 0,0(6, up, g,) > CO73 ( (1, Un, Gn) + 7 ﬂ)@b(l,gn)) = CH"™3. The

remained work is to show (6, u,,), (6, ¢,) < 6*+3, which counter the claim immediately.

©(0,uy) < 6173 Notice (uy, g,) is suitable weak solution of following system on Q;:

atun - Aun + (bn + 6nun) : vun + an = Gn,
V-u, =0.

Moreover, the uniform bound (5.15) implies

R L3 L3 L3I+l
bn_>b7un_\u7Qn q; 9n > 0

Now we attempt to derive a strong L?-convergence for u,, by Aubin-Lion lemma: The local
energy inequality implies?

HunHL10/3(Q7/8) S “unHLOOLQHLQHl(Q7/8) S

and following calculation implies ||O;u. | 4 1y Sl

fou el s e s

1 3
Sllunll 2 g € g + lunll g2 1CH 22+ lunl Zo g2 llnll L2 o 1 VCH a2
SISl o)

Since H' <& L2 < (H})', together with [[u,|| ;2,0 S 1 and ||Opuy| 4 1, we see

~

Lg Hl/

S
. . L?
{u,} is precompact in L*L? and thus u, — u. Moreover, since ||u,| ;05 < 1, so the

Holder interpolation implies® u,, &) ,Vq €12,10/3).

Consequently, (u, q) solves* following system in Qr:

ou—Au+b-Vu+ Vqg=0,
V.u=0.

Py = n(omn — (vIn)1) = n(olm — (v7)1) — n((vir — (v7)1)1) = upn — (uy)1. Similar for q,.
22is the initial data for each u,, determined?
] 0 _
3”um - Un”q < ”um - “n”z”um un||1o/3 S ||um un||2,Vq = g + %~
“Particularly, it is a suitable weak solution which is preseved by weak limit. Details see Lin’s Paper, Theorem 2.2.


https://varnothing.net/wp-content/uploads/2021/11/lin1998.pdf

Following we show that « is Holder continuous:

(0 —A+b-V)(V xu)=0=V xu€e L%Qs) == Vu € LL"(Qys),
g€ L3, Aq(t) =0 —> Vg € [¥20 TELELDANE 5y ¢ [321°°(Quys).

It comes u € C*%(Qs4) for & =1 — 3 /2 = a = . Then the Campanato characterization
in parabolic version gives out following bound since 9 < 3/4:

ot [l 1228 e [ S
Qo

which implies ¢(0,u) < 61,

2. ¢(0,q,) S 1:notice Ag, = €,V - (uy - V) + V - g, = €,(0;0;(v'0?)) + V - g, on Q7/s,
so we split ¢,, = ¢, + h,, where

NGy = €C(0,0;(v'7)) + (¥ - gn.C € D(Q:) cutoff on Qs;
Ah, = A(¢, — Gn) = 0on Q%.
We estimate ¢,, by Riesz potential, and h,, by properties of harmonic function:

||(jn||L3(Q7/8) :”[2 GnC 86(“Z u])) + CV “Gn )HLB/Q (Q7/8)

<€n||621—‘>l< ||L3/2(Q7/8 + Hgn”L2L2 Q7/8)

§€n||un||L3(Q(7/8)) + ||9n||L2,2v+1(Q7/8) Sentr)

0
/ |hn - (hn)9|§ :/ |h - 5 :/ / 0||h ||lZP(Q6))§
Qo —02 J By o2

0 0
3 5 3 3/2
<O / 100l 5,y S 6% / 1l i, 09

—9/16

0
3 3/2
SO [l SO0 [
9/16 Q3/4

3 - 3
<p+ / (Iga*? + 1312) < 6°3.
Q34

Ithis is reached by following estimate:

112(¢V - ga) || SN2V (Con) + a5

L%(B7 8)
S ||IlgnH6 + ||I2gnH 15~ ||9n||2 =+ ”9”5/4 < ”gnHz

Here we will encounter critical case ¢ = 1 for [|g||, if no amplification by cutoff function.



And then the estimate g,, follows:

N
Njw

2 ~ ~
g = (an)ol? S [ B — (hn)ol® + [ |G — (Gn)el
Qo Qo Qo
SO (en+ 1) S 694
if €, +r)~# < #3. Consequently, we have (0, q,) < 0*F 5.
Combine together, we get (0, u,,, pp) S 01+3 . O

Proposition 5.26. For any v € (0,2],a € min{2,~}, there are ¢, > 0,0 € (0,3),71 > 0 such
thatif 3R < ry, f € L»2(QR), (v, p, f) is a suitable weak solution of (NS) in Qr, and

¢(R7 v, p) S €1.
Then v € C*2(Qgr).
Proof. First we set following relations to apply the above lemma:

1 1 )
B=5la+7):0€(0,5],C05 +6” < 6%
(€2=T2) ~ (‘97577) ~ (’Y,Oé);

i=u:
. €2
1 =minq 7
1 25 (2||f||L2,2A+1(QR)>

Then for any z € Qpr,7 € [0(1 — O)R, (1 — O)R], denote V(z,7) == @(z,1,v,p) + (2,1, f), we
attempt to show

(z,0%r) < 09k, Vi >0, (5.16)
which means for any p € (0, (1 — 0)R](p = 0%r),

1+« 4o
plep) <) < (2) e < (i) & S e,
r Oro

That is say, v € C*2(Qyr) by Campanato characterization. Then the remained work is to verify
(5.16). Indeed, the condition implies k£ = 0 case:

P(z,r) <1;?
\IJ(Z,T) :90(277‘7,07}?) + 1/)(27707 f) S Cw(z7’r7v7p) + ¢(Z’r7 f)
<c(R/r)3 (R, v,p) + (r/ro) o 4(z, 10, f)

€2
<cper + 5 < €



for €; small enough. Moreover, the iteration follows by the lemma:
o(z,0%r) =1;
U(z,0%r) =p(z,0%r,v,p) + (2, 0%, f)
<CH“t3 (p(z,0" 'r,0,p) + (2,057, £)) + 0 Py(2,0" 'r, f)
<O (2,05 1r) < - < QTR
Thus the claim finished. (]

Theorem 5.27. For any s € [1,00], there exists € > 0, such that any (v,p, f) a suitable weak
solution of (NS) in Qr, v is regular at z € Qr if one of following conditions holds:

3 2 e —(3421
L T35 [1,2), liminfr =0 — (0), | e aggeny < €

3 2 c e —(342-9) ;
2. o+ 5 € 3l mintr e N e pagiary < 6

Proof. 1t is convenient to denote homogenous quantities:

L2 1 2
A(r) = ;||U||L°°L2(QT)> B(r) = ;HVUHLQLQ(QT);

3
2
3

L2(Qr)

I

1 ~ 1 1
Cr) = 5 0lg,: €)= o = (@), 310, D) = 5l

Gr(r) =~ — ()5,

LoLa(Qr)

1
pora(@r), Ga(r) = ;||VU
For above quantities, there are rough dominations for &k > 1,

A/B/C’/é/D/G(T) < ck.A/B/C’/C'/D/G(k:r).
To process further, we’d like to show the following estimates for iteration: Vr < g,
r p 2 r p 2 .

< | = L < | _ Ll .

ot 5 () e+ (2) o0 5 (5) v+ (£)' oy

r

(5.17)
C(r) < As(r)E5(r)G(r), (A+ E)(r) < 1+ (C + D)(2r).

And all above estimates give out: Vr < g,

o(§) s (§) e (Ha(§) = ((4(3)+ (1-1) 2 () e (5)

s+E)(5)e(5) sa+C+D))Ge):

c+oyn s (5) ) (5)+(8) e (5):
$(2) €+ 010+ (2) 1+ + Do) i)



Set the constant as ¢ > 0, then we choose 6 € (0,1/4) so that ¢§ < 1/4. By assumption, there is

2
ro > 0,Vr <1y, G(r) <

. Then the estimate indicates:
1+ 8¢

(C+ D)(0r)

IN

(C+D)(r)+602(1+ (C+D)(r))G(r)

N DN

(C+ D)(r)+ %?,

S5 (C+ D)(r) + 5. Vr <o,

IN

— (C + D)(6"r)

A
w| =

Then for k big enough(depends on 7), we have (C + D)(0%r) < ¢,. Let R = 6*r, then the above
criterion shows v is regular near 0. Following are the verification of (5.17):

L) 5 (5) Clo)+ (8) Cl):
c) 5}2 / o= sl [ 1005,
0 (3l ront) o)

5(3) Clo)+-Clo);

r

[\

p r

where Ap = ((9;0;(v'v7)), ¢ cutoff on B, 5. Then

. D(r) < (f) D(p) + (3)2 C(p) : Since Ap = 8;0;(v'v7), then we decompose p = p + h,

15,35, S |0+ @030 = @)5)07 = @B D)|| S o = @), 11305,

. 3 . . .
and since |h|? is sub-harmonic?, it comes

M/ A+ = /|h|2<—/ ot 55 [ ol
<(;) (;/Bp )+ (5 2) ([ )
< (%) D(p) + (g)Qé(p)-

0
'Here [, |(0),[* = [° 2 1Boll(0)5,] < (2)* [° 2 [BylI(0)5,] < ()P fi, 10"
2Sub—harmomclty is preserved under convex function.




3. C(r) < As(r)E'5 (r)G(r): Apply Holder interpolation:

~ 1 3 1 2 92
C(r) =3lv = (s 1@, S 2V = W i rallv = )b 126 ll0 = ()l s

1 1 1 1—1
2 ) 2 °
S (Feliis) (HolEs) o= 0

The second condition is similar: For (g, s) = (3,1),

[o = (v)B,

pere = AT () EY7S (r)G(r);

2
) Sllv = (v),
<llvll;

_3 3
WVl pagp,y +r72llv = (v)B,

)

).

Integrating in time and apply Holder interpolation :

~ - 3
Ow) =l = @) s |y oy
-2 2
@1WMm3wva&>w oy
S ol i@l V¥l s, = AMGaA).

4. (A+E)(r) S1+(C+ D)(2r) : We take ¢ € D(Q2,) cutoff on (), then the local energy
inequality gives:
2
1ol 2,y + V0N 720,y <10l 2, +/Q [0]*(0v9 + A¢) + (v + 2p)[v| Ve
- 2 —2y 113 _
S+ 72 0llz2 g,y + 7 0l La(qu,y + 7 Il L)
Take 7! at both hand, we get that

2l

_ 3 3
A(r)+ B(r) <1+ (r 2”U||L3(Q2T))2 HL3(QQT)1

2

_l’_
3 5 s
-2 -2 2
(2 oln) (20l )
S1+C(2r) + D(2r).

'Notice [Vl p2(g,,) < Q|23 [0l £3(Qay ST ||UHL3(Q3 )



5.8.3 Singularity

Suppose v is a weak solution (NS) in Q7, we say v is regular at z = (z,t) € Qr, if v € L®(Q,,. N
Qr) for some r > 0, otherwise it is singular. The set of singular points is denote as

S = {z € Qrlvis singular at z};

and the projection to time ¥ = P;(S) = {t € (0,T]|(x,t) € S for some = € Q} is called the set
of singular times. To measure singular times more precisely, we introduce the Hausdorff measure
of E C R™

HY(E —1{;njéﬁf{z7" ECUBQ?J,TJ}

Clearly it is equivalent to Lebesgue measure when oo = n, and H*(E) < m(E) if a < n.

Theorem 5.28. Let v be a Leray-Hopf weak solution in Q1 with zero force, satisfies the strong
1
energy inequality. Then Hz (X)) = 0.

Proof. Denote following time sets

={t € (0, D)[llvll s = o0} ;
Yo = {t € [0,T)] strong energy inequality does not launch at ¢ } ;
Uy = (OaT) \ Y1, U = [07T) \ Y.

Clearly X1, 33, are Lebesgue zero-measurable by the assumption. For any ¢ € Uy, v(t) € L2 N LS,
then it generate a mild LHWS ¢/(regular of course) at time interval:

[t ¢+ T (1), T(t) 2 |[vllg "
For t € Uy, vis a LHWS at interval [¢,7"). Consequently, the strong-weak uniqueness implies
v' =w atinterval I(t) = (¢, min{7'(t),T}), if t € U; N Us. We set
Us= |J 1(t),S5=(0,7)\Us.
teUiNU2

Then v must be regular in Us, and the singular times set > C Y3 U {T'}. Now it is enough to
check H*(33) = 0. To apply Vatali Covering lemma, we set £5 = ¥3 N[0, min {7" — ¢, 5 }]. Since
33| = 0, we can choose V' neighbor X3 with 0] 26wy < € Now forany t € e,

3r, <6, B(t,r) cV=x5c || B(tnr)cV = 3B(t,r;) disjoint, 5§ C | | B(t;,5r;).
Jr" ] J J

texd J
Notice for any ¢ € (t; — 7,t;),t € Us, t; € 33, the blow-up rate is ||v(t)||s 2 ||t; — t|| . Then

tj t; 1
/ lo@I 2 ! / (-t 2t = TS < 0 rF < ol s <€

ti—r; tji—rj



As §, € varies arbitrarily, we have Hz () < Hz (%) = 0. O

To measure the singular points, a parabolic version Hausdorff measure is need:

PY(E _h(géilf{Zr ECUQ :z;],r]}

Theorem 5.29. Let (v,p) be a suitable weak solution of (NS) in Q with force f € L>*1 )\ €
(0,2). Then P'(S) = 0.

Proof. The idea is similar with former one, where we use e—criterion to determine the blow-up
rate. To apply parabolic Vatali covering, it is proper to define a shifted cylinder:

7 1
Q*(z,7) = B(x,r) x (t — grz,t + §r2),
so that Q*(z,7) 3 z and Q*(z,r) D Q(z, 37). For the set S of singular points, we cut it off by

ReQx(0,T]sothat SN R & 2 x (0, T—I—l) Fix § > 0,¢ > 0,3V 5 SNR, S IVo(t )P < e
And for any z € S N R, we can find r, < §/5 small enough s.t.

Q*(z,7,) C V,/ |Vv|2 > cr,.
Q(z,r=/2)

Consequently, we get
SNRC UQ*(z,rz) = 3Q"(z;, ;) disjoint, S N R C U Q" (zj,5r;)

by parabolic Vatali covering. And thus

TJSCZ/ |w|2§(12/

Vol < c/ Vof? < Ce.
Q*(z5,75) 14
Since R, §, € vary arbitrarily, we see P!(S) = 0. O

Q(z5,r5/2)

5.9 Self-Similar Solution

By the scaling relation, we seek for a solution (v, p, f) satisfies (v,p, f) = (v*,p*, f}),¥A > 0
given a conic domain €'. Clearly the solution is determined by its value at time 41, as

(0,9, f) (@, £) =((£2VEv, £ (Vi)*p, t—%w%ffw%, (V)?-1)

=L VA -1 VA =2 ey T

=(t"20Vt ¢ 172 —.1

( p f )(\/E )
1 3 xr

=(t"2v,t p,t 2 f)(—, 1).

( p f)(\/i )

'Notice that [[v(t)||q 2 (t; — t)7 holds for almost every ¢ by the definition of Us.
'Especially, the half/whole space.




