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Lecture 0. Abriefintroduction ofunbounded operators.
In thislecture, I'd like tointroduce the bastenotions aboutunbounded)

operators A: D(A)&X- Y. Indeed, the most mass resultwhy we

investigate the unbounded case for PDEers isthatthe differential operators
are always unbounded.

Example 1. We consider the differentiation
A =t:c'=c[a,b) ->c[a,b].

Then letunits =simnt, then Ilunlctabs=1, but 11 AnnIlcia,b) =4=b,
which implies A:Itisunbounded.

So we'd like to formulate a rigorous theory for theunbounded operators, which
willserve as a fundamental language for PDE. It can be introduced briefly as

followingparts:

" Basic notions:the extension and dual/adjointofa unbounded operators.
The closed, symmetise and self-adjit operators and its related facts.
some applications to the Laplactam -0, includingits dosure and self-adjit
extensions.

2) Spectral theory:The resolventand spectrumfor unbounded operators.
Two classification ofspectrum set. Spectrum of 4.

Functional calculus:A =S6A) *dEx) -> f(A) =S6xf(x)dE(x).Roughly saying, we can characterizationthe operators by its spectrum. And toobtaina kind ofoperator, we can operate directly on thespectrum,and return the
operation back to the operator level. place.

3)perturbation:We investigate the stability ofthe functionalproperties,
includingthe closedness, invertibility, self-adjortness and thespectrum set



under a proper perturbation. Indeed, many kind ofoperators we concerned, 2

Such as Schrodiger operator - 0+V, stokes operator
-PC and

Lame perior
- 0 +X (5.), can be viewed as perturbations ofLaplactan - 1.

4)semigroup theory:we rigorously define the semigroup etA, and analyse
File- Yostda,

when we can generate such kind ofa sub-group. Szumer-Philplass
stone

Usingsuch concepts, we can strictly establish the well-posedness for abstract

Cauchy problems:GLU-AU=f(The Navser-Stokes and Schrdinger can be
41) =U..

reduced to such kind ofabstract case.)
spesudo-syetrum, analytheseagroups, spectralAs for more deep topic I'dmentioned, it's better to introduce them after anlysis)

The finish the above fundament theorys.

I should mentionthatthe basicmotions inspectral perturbation (semigroups
are independent, are many books extract only one topic to introduce:

Bask notions

2
↓

spectral theory -perturbation - samigroup
exceptsome advanced results. I'd liketo clarifythispotent for a clear
Sketcle in mind.



Lecture 1. Basie notions about unbounded operator. 3

As we introducethe differential operator A:at, the domainofunbounded

operators are not always everywhere- defined:

A:D(A) 2 X - Y.

For example, the Laplakan -0: DCLP->2" defined naturally inD.
Butwe may concern its extension inweak sense, (for example, insoboler spaces).
Definition 1. We define theaph ofa operator A as:

↑(A) =9(x, Tx)eXxY/x cD(A)Y

Then we say It isa extension ofA, devoted as A =A, ifP(A)= P(A).-

Remark.Itisequivalentto say, for xeD(A), we have XeD(E) and Ax=Ax.

The another important conceptisthe dual (or conjugate, insome textbook)
ofa unbounded operator (The analogue one is the adjointfor Hilbert case).
The recall thatfor bounded operator A: X-Y., the dual operator A:Y'- X'-
isdefined by following characterization:

(Ax, y) =(x, Ay'), xeX, y'tY'.

The similar idea isapplied to the unbounded operators, buta well-definedness

argument should be noted dueto not-everywhere-defined domain. And thisisthe

reason why we always require dense
-definednesswhen the dual arises.

Proposition 1. Let X.Y be W.V.S., and X'Y' be thedual.

Consider A: D(A)2X-Y. Then ifand only ifAis densely .defined, the following setcan be viewed as a graph
- P= = [(y',x) e Y'xx)(y',Ax)=(x,x), txeD(A)]

for some operators. In this case, we define A': y' - y',DIA)=Py, (P).



Remark. In the dense-defined case. Aexists and ischaracterized by 4

cy', Ax) =(Aly', 4), F XGD(A), y'-D(AY. *

Proof. Thatistoshow,given ifthere existsby', xi), ly', xi) lays inP, then
xi =x. Indeed,

(x!, x) =(y),Ax) =(x2,x), XxeD(A), -> (x!-x2, D(A)) =0.

Since DIA) is dense in X, then Xi= x2.

-

ofa operator

Suppose A: D(A)-H -> H, where it is a Hilbert space. We can similarly

define the adjoint ofA ifA isdensely defined. And itis characterized by:

CAN,y7 =< x, A*y), F x-D(A), ye D(A*).

we show note thatfue adjointand thedual has the following relation:

A*=60 A'067:DCA4) =64oD(A) ->H

Proposition. Suppose A: D(A)-H->H, where it is a Hilbert space, then:
Ithe dual A* exists ifand only if A isdensely defined;
3 under the above case, if further A***(A*)*exists, then A = A **naturally

Proof:1 The idea is analogue to the dual case and so we omitit.
grant byexistence~ For X=D(A), we showthatXeDCA**) as there exists minque x*=AX-

such that [A*y, x>= <y, Ax =<y, x*), FyGD(A*).

consequently, we see A***= (A*)*X =x* =AX, which implies AlA**:



-
symmetricity and the self-adjortness 3

In tus part, we'd like to introduce the notions about closedness and

symmetricity, and finally establish the basicfacts aboutself-adjortoperators.
The mind trace can be formulated as following digram:

unbounded -> closed everywas bounded
t defined

I densely Idefined
↓

symmetric -> self-adjountness

First we'd like todefine the relevantconcepts aboutdssedness:

Definition 2. Suppose A: D(A)-x- Y. Then we say A is a closed operator-
ifthe graph PCA) isclosed. More generally, A isable ifit has a closed
extension. In this case, we define the smallestclosed extension as the
closure ofA, devoted as A.
-

Remark:There isa more useful definition to characterize the dosability:

A is dosable ifand onlyifITA) isa graph ofsome operator, in thiscase
/A) =P(F) exactly.

Indeed, we can show the equivalence:
:IfPA) =P(S) for some operators, then s mustbe aclosed extension ofAs
=>IfS isa closed extension ofA. Then by definition (TA) 14(s), which

imples PTA) isuniquely correspondent (i) and thus a graph ofsome
closed operator, devoted as R. The abitrarily ofSimplies R =A.



some clarification are listed below: 6

Proposition.Suppose A:DCA)_XtY. Then
1 A isclosed ifand only ifF (Xn,Axn) eP(A), (Xn,Axn)-> (x,y) implies
x = D(A) and y =AX.

2) A is dosable ifand only ifF (xn, Axn) ePCA), IXn, Axn) -> 10,y) implies y=0.

Proof:1 Directfrom the definition.

2 If A is closable, then the limit10,y) lays in PT)=P(S) for some
knear operators, which implies y =SIO)=0.

conversely, we can define theoperators by following approximation:
Sx=lim AX, XXt DTA),

There iswell-defined by the assumption (free with choiceofAxn).
Now we discuss the properties when it involves the adjoint.
Proposition:suppose A:D(A)=H -> H, where HisHilbert:
x iffA*exists, then A*isclosed naturally;
3 if further A**exists, then A isdisable. In thiscase, we have:

A =A**, A* =(A)*.

Indeed, we can observe from the characterization:

-y*
<Ax,y) =<x, Aty), OXEDCA),

=>< (- AX, X), (y, y*)> =0, FX-DLA), #
=>cy,y*)G(J0P(A))4, 7:1x,y)- c-y, X).

Then we can easily obtain thefollowing lemma:

Lemma:T* exists ifand only if(J0P(A))+is a graph of some operator. In this case,
we have (J0P(A))+=P(T*).



proof ofproposition:1Itis directlyfrom the lamina, stirce complimentis always closed.
7

2) We should notice that:PTA) =(P(A)+)+ = (50304(A)4)- =(70P(A*))2
-

jif A** exists)=P(A**). invariant for near space
This implies. A is closable, and itsclosure isexactly A**. (F =A**).

and (A)*=(A**)*
=(A*) **

=A*.

Converse side check later. .

some other properites will be checked later when we need.

Theorem. (Closed Graph). Suppose A: DC-X-Y isdosed, then A is bounded it e.d.
Theorem. (Hille). Ag =SA.

-tocompute a closure.

Here we'd liketogivea method tocompute the closure extensionsand take the
Laplacan - 1: DCLP- 2P for example.

proposition:Suppose X,isBanack, then A: D(A)(X-Y isclosed ifand

only if D(A) iscomplete under the graph norm 11. Itsdefined by

11 x 11p =111x, Ax) 1xxY =11x1x+1Ax1y.

Proof:we consider the isometry:

8:D(A) -> P(A), x +IX, PX). b
x↓

11. 1lp 4.
11xxY

P(A) is closed in.XxY> PCA) iscomplete in xxY=> D(A) iscomplete in 11. 114.

Then the closure of -1: D122-22 has the domain:

D( -) =(Ex)P
=(6) t=IT=H8.

ut DSince lullt= lulL+10h122 Hulipp by Poincarerequality -



Symmetricity and self-adjointness. 8

As the adjoint notions are always involved inthis section, we'd like toassume

A: D(A) &H -> H isdensely defined first.

Definition:We say A: D(A)&H+ H isareif AlA*fontif
A =A*. And say A isself-adjointifitis self-adjoint

we'd like todarfy thesenotions inlater discussion. Indeed, a symmetric operator
A can be characterized by:

<Ax,y) =sx, Ay>, XXeD(A). ye DCA).
Then adjointrelation ofa symmetric isquite interesting:

(closed)
(E)proposition:Suppose A is a symmetrice operator. Then A*, ***existsand A& A **A*.

Proof:A** exists since A&A* imples D(A*)ID(A) isdense. In thiscase, we
A is closable and

know thatA&A =A**. Moreover, since A*is dosed, then ACA*, which
grant finally A

F**
The following proposition give several equivalentcondition when a symmetric operator is
self-adjott.

Proposition. Suppose A: DIA)&H-H is a symmetreoperator, then the following
statements are equivalent:

~ A is self-adjoint;2) D(A)=DCA4); 3) A isclosed and ** is symmetrie
4)A is closed and Ker (*(i) =90];5) Ran (Ati) =X.

6) 6(A) 1 IR. (prove later).



E.
proof:I E> 2) isclearly from the definition.

~=>3) is from the fact:A*(A*)*=E =A.
I => 4 Self-adjointimplies A:A* isclosed dearly, moreover, Fxc Ker (A*(i)
(A*(i)x =0,

Fi(x, x) =(Fix,x)=(AX, x =x4, AX7 =x4, Fix) =zisX,X)

=>(y,x)=0 =x=0.

4) ->5). clearlyRanIi)=X, we show than Ran (Tti) is closed.

The importantobservation isthat

11(TE:)x 12 =< (Ti) x, (TEi) x>

-0
=(TX,Tx +(x,x) +xeneIX,TX)
=> 11TX 112+ 11x1)2.

Then for SPI)xn]cauchy, so is [xn3 and STXny. and closedness /

ensure Xn-xo and TXtYo, which implies:(Ti) xn - (T[i) xo.
5) =>1. We need to show for xeD(A*), XeD(A). Since Ran (Ati) =X,
we can find xEDLAs such that (Alilx= (A*E:)X. Following me show. x =x:
0 A1A*-> (Ati) x=(A*i)x- (A*(i)(X- x) =0 =x-x=0.

Adirect corollary from 4),5) isthe following characterization for essentiallyself-adjoint:

Corollary:A symmetric operatorA:D(A)&H-> H is essentially self-adsomtit
$kerCA*i2) =0;or 2) Razil) =H.




