Hahn-Banach 定理及应用

孟维利

2023年11月26日

1 分析形式的 Hahn-Banach 定理

Definition 1.1. (次线性泛函) 设 E 是实数域上的线性空间, 称 $p: E \to \mathbb{R}$ 为 E 上的次线性泛函若

- $(1)p(\lambda x) = \lambda p(x), \quad \forall x \in E, \lambda > 0;$
- $(2)p(x+y) \le p(x) + p(y), \quad \forall x, y \in E.$

Example 1.2. 半范数, 范数以及后面的 Minkowski 泛函都是次线性泛函.

Theorem 1.3. (余维为 1 的 Hahn-Banach 定理) E 是实线性空间, $F \subset E$ 是 E 的余维为 1 的线性子空间, $p: E \to \mathbb{R}$ 是次线性泛函, f 是 F 上的线性泛函, 满足 $f(x) \leq p(x)$ 对于任意的 $x \in F$. 则存在 $\tilde{f}: E \to \mathbb{R}$ 线性泛函, 满足 $\tilde{f}|_F = F$ 且 $\tilde{f} \leq p$ 在 E 上成立. 证明. 任取 $x_0 \in E \setminus F$, 则 $E = F + \mathbb{R}\{x_0\}$, 我们定义

$$\tilde{f}(tx_0 + x) = ta + f(x), \quad \forall x \in F, t \in \mathbb{R}.$$

利用 p 的次线性性可以找到 a 使得 $f(x) \le p(x)$ 在 E 上成立.

Theorem 1.4. (实线性空间的 Hahn-Banach 定理) E 是实线性空间, $F \subset E$ 是 E 的线性子空间, $p: E \to \mathbb{R}$ 是次线性泛函, f 是 F 上的线性泛函, 满足 $f(x) \leq p(x)$ 对于任意的 $x \in F$. 则存在 $\tilde{f}: E \to \mathbb{R}$ 线性泛函, 满足 $\tilde{f}|_F = F$ 且 $\tilde{f} \leq p$ 在 E 上成立.

证明. 从余维有限维过渡到无穷,我们需要利用 Zorn 引理,定义 \mathcal{F} 为满足以下条件的二元组 (G,g) 构成的集合

- 1. $F \subset G \subset E$, $G \in E$ 的子空间;
- 2. $g \in G$ 上的线性泛函且 $g|_F = f$.

定义 牙 上的偏序关系 ≼

$$(G,q) \preceq (H,h) \Leftrightarrow G \subset H, h|_G = q$$

容易验证每个非空全序子集都有上界,则 \mathcal{F} 存在极大元 (M,m),则 M=E,若不然,由余维为 1 的版本,总可以向上构造新的极大元,矛盾.

Theorem 1.5. (复线性空间的 Hahn-Banach 定理) E 是复线性空间, $F \subset E$ 是 E 的线性子空间, $p: E \to \mathbb{R}$ 是半范数, f 是 F 上的线性泛函, 满足 $|f(x)| \leq p(x)$ 对于任意的 $x \in F$. 则存在 $\tilde{f}: E \to \mathbb{R}$ 线性泛函, 满足 $\tilde{f}|_F = F$ 且 $|\tilde{f}| \leq p$ 在 E 上成立.

证明. 这里只需注意到一个复线性空间自然也是一个实线性空间,半范数也是次线性泛函,而一个复线性空间上的复线性泛函和实线性泛函全体是同构的,原因是一个复线性泛函总可以由它的实部决定,即 $f(x) = \phi(x) - i\phi(ix)$,这意味着我们可以将 f 的实部 ϕ 延拓成 $\tilde{\phi}$,再由 $\tilde{\phi}$ 决定 \tilde{f} .

Corollary 1.6. E 是实赋范线性空间, $F \subset E$ 是 E 的线性子空间, g 是 F 上的连续线性泛函,则存在 $f \in E^*$ 是 g 的保范延拓.

Corollary 1.7. E 是实赋范线性空间, 任意 $x \in E, x \neq 0$, 存在 $f \in E^*$ 使得 f(x) = ||x||, 且 ||f|| = 1.

Example 1.8. $\sigma(E, E^*)$ 是 Hausdorff 的.

Corollary 1.9. $\tau: E \to E^{**}, x \mapsto x^{**}$ 是等距映射.

2 几何形式的 Hahn-Banach 定理

Definition 2.3. (隔离、严格隔离) 称 $[f = \alpha]$ 分离 A 和 B, 若 $f(x) \leq \alpha, \forall x \in A$; $f(x) \geq \alpha, \forall y \in B$. 称 $[f = \alpha]$ 严格分离 A 和 B, 若 $f(x) \leq \alpha - \varepsilon, \forall x \in A$; $f(x) \geq \alpha + \varepsilon, \forall y \in B$.

Theorem 2.4. (凸集隔离定理) 设 E 是赋范线性空间, A, B 为 E 中互不相交的凸集, A 开, 则存在超平面分离 A, B.

- 证明. 定义 Minkowski 泛函,对于 C 是包含原点的开凸集,定义 E 上关于集合 C 的 Minkwoski 泛函为 $p(x) = \inf \{ \alpha > 0, \frac{x}{\alpha} \in C \}$,容易验证 Minkwoski 泛函是次线性泛函,且 $C = \{ x \in E : p(x) < 1 \}$,开集又保证了存在 M 使得 $0 \le p(x) \le M \|x\|$.
 - 利用 Minkowski 泛函,我们可以将一个包含原点的开凸集 C 和任一点 $\{x_0\}$ 分离,即存在 $f \in E^*$ 使得 $f(x) < f(x_0), \forall x \in C$,其中 f 的连续性是由 p 的连续性保证的. 事实上由线性空间和线性泛函的线性性,对于不含原点的开凸集,我们也总能找到连续线性泛函分离这个集合和原点.
 - 考虑 C = A B, 可以验证 C 是不含原点的开凸集,则可以将 C 与原点分离,即将 A 与 B 分离.

Theorem 2.5. (凸集严格隔离定理) 设 E 是赋范线性空间, A, B 为 E 中互不相交的 凸集, A 闭, B 紧, 则存在超平面严格分离 A 和 B.

证明. 考虑相同的操作, 令 C = A - B, 则 C 是不含原点的闭凸集, 存在原点的开邻域 U = C 互不相交, 存在超平面分离 U = C, 这也就意味着严格分离 A = B.

Corollary 2.6. 设 E 是赋范线性空间, F 是 E 的线性子空间, 若任意 $f \in E^*$, $f|_F = 0$ 能推出 $f \equiv 0$, 则 $\bar{F} = E$.

Remark 2.7. 这个推论常常被用来判断一个子空间是否是稠密的,例如我们可以证明 $C_{\infty}^{(\alpha)}(\Omega)^{\|\cdot\|_{W^{-k,p'}(\Omega)}} = W^{-k,p'}(\Omega)$.